Advanced SearchSearch Tips
Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Fish at Starved State
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 2,  2016, pp.155-163
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.2.155
 Title & Authors
Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Fish at Starved State
Yum, Jung Joo; Kim, Gyu Dong;
  PDF(new window)
Metabolism of lactate dehydrogenase (EC, LDH) was studied to identify the function of LDH-C. Tissues of LDH liver-specific Ldh-C expressed Carassius auratus and eye-specific Ldh-C expressed Lepomis macrochirus after starvation were studied. LDH activity in liver tissue from C. auratus was increased after starvation. And LDH specific activity (units/mg) and LDH/CS were increased in tissues. It means the anaerobic metabolism was taking place in C. auratus after starvation. LDH B4 isozyme was decreased in skeletal muscle and increased in heart tissue. LDH C4 isozymes those showed in eye and brain tissues were identified as liver-specific C4 isozymes and disappeared after starvation. And C hybrid in eye, A4 isozyme in brain, and both C hybrid and C4 isozyme in liver tissue were increased, respectively. In L. macrochirus, the level of variation of LDH activities was low but greatly increased especially in eye tissue and LDH A4 and AC hybrid were increased in brain tissue. The LDH activities in tissues from C. auratus and L. macrochirus remained 30.30-18.64% and 25-18.75%, respectively, as a result of the inhibition by 10 mM of pyruvate. The KmPYR values of LDH in C. auratus were increased. As a result, LDH liver-specific C4 isozyme was expressed in liver, brain and eye tissues during starvation. It seems metabolism of lactate was predominant in brain tissue. After starvation, the liver-specific LDH-C was affected more than eye-specific LDH-C.
Carassius auratus;KmPYR;lactate dehydrogenase;Lepomis macrochirus;starvation;
 Cited by
Baumgart, E., Fahimi, H. D., Stich, A. and Völkl, A. 1996. L-lactate dehydrogenase A-and AB isoforms are bona fide peroxisomal enzymes in rat liver evidence for involvement in intraperoxisomal NADH reoxidation. J. Biol. Chem. 271, 3846-3855. crossref(new window)

Black, D. and Love, R. M. 1986. The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. J. Comp. Physiol. B. 156, 469-479. crossref(new window)

Bond, C. E. 1996. Nervous and endocrine systems. pp. 241-258. In Bond, C. E. (eds.), Biology of fishes. Saunders College Publishing, FortWorth.

Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. crossref(new window)

Brooks, G. A. 2009. Cell-cell and intracellular lactate shuttles. J. Physiol. 587, 5591-5600. crossref(new window)

Brooks, G. A., Brown, M. A., Butz, C. E., Sicurello, J. P. and Dubouchaud, H. 1999. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. J. Appl. Physiol. 87, 1713-1718.

Chatzifotis, S., Papadaki, M., Despoti, S., Roufidou, C. and Antonopoulou, E. 2011. Effect of starvation and re-feeding on reproductive indices, body weight, plasma metabolites and oxidative enzymes of sea bass (Dicentrarchus labrax). Aquaculture 316, 53-59. crossref(new window)

Cho, S. K. and Yum, J. J. 2005. Changes of activities and isozymes of lactate dehydrogenase in Coreoperca herzi and Pseudogobio esocinus acclimated to rapid increase of dissolved oxygen. J. Life Sci. 15, 71-79. crossref(new window)

Cho, S. K., Park, S. Y. and Yum, J. J. 1993. Purification and immunochemistry of lactate dehydrogenase in Lampetra japonica. Kor. J. Zool. 36, 505-513.

Coonrod, S., Vitale, A., Duan, C., Bristol-Gould, S., Herr, J. and Goldberg, E. 2006. Testis-Specific Lactate dehydrogenase (LDH-C4; Ldh3) in murine oocytes and preimplantation embryos. J. Androl. 27, 502-509. crossref(new window)

Davis, B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. NY Acad. Sci. 121, 404-427.

de Almeida-Val, V. M. F. and Val, A. L. 1993. Evolutionary trends of LDH isozymes in fishes. Comp. Biochem. Physiol. B. 105, 21-28. crossref(new window)

De Roos, R. 1994. Plasma ketone, glucose, lactate, and alanine levels in the vascular supply to and from the brain of the spiny dogfish shark (Squalus acanthias). J. Exp. Zool. 268, 354-363. crossref(new window)

Dunn, J. F., Hochachka, P. W., Davison, W. and Guppy, M. 1983. Metabolic adjustments to diving and recovery in the African lungfish. Amer. J. Physiol. 245, 651-657.

Fantin, V. R. and Leder, P. 2006. Mitochondriotoxic compounds for cancer therapy. Oncogene 25, 4787-4797. crossref(new window)

Furné, M., Morales, A. E., Trenzado, C. E., García-Gallego, M., Hidalgo, M. C., Domezain, A. and Rus, A. S. 2012. The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. J. Comp. Physiol. B. 182, 63-76. crossref(new window)

Furné, M., Sanz, A., García-Gallego, M., Hidalgo, M. C., Domezain, A., Domezain, J. and Morales, A. E. 2009. Metabolic organization of the sturgeon acipenser naccarii: a comparative study with rainbow trout Oncorhynchus mykiss. Aquaculture 289, 161-166. crossref(new window)

Gillis, T. E. and Ballantyne, J. S. 1996. The effects of starvation on plasma free amino acid and glucose concentrations in lake sturgeon. J. Fish Biol. 49, 1306-1316. crossref(new window)

Goldberg, E., Eddy, E. M., Duan, C. and Odet, F. 2010. LDH C: The ultimate testis-specific gene. J. Androl. 31, 86-94. crossref(new window)

Hinch, S. G., Cooke, S. J., Healey, M. C. and Farrell, A. T. 2005. Behavioural physiology of fish migrations: salmon as a model approach. Fish Physiol. 24, 239-295. crossref(new window)

Kim, J. B., Cho, S. K. and Yum, J. J. 2004. Changes of activities and isozymes of lactate dehydrogenase in Coreoperca herzi acclimated to acute increase of temperature for short-term period. J. Ind. Sci. 43-50.

Koehler-Stec, E. M., Simpson, I. A., Vannucci, S. J., Landschulz, K. T. and Landschulz, W. H. 1998. Monocarboxylate transporter expression in mouse brain. Amer. J. Physiol. 275, 516-524.

Koslowski, M., Türeci, Ö., Bell, C., Krause, P., Lehr, H. A., Brunner, J. and Sahin, U. 2002. Multiple splice variants of lactate dehydrogenase C selectively expressed in human cancer. Cancer Res. 62, 6750-6755.

Koukourakis, M. I., Giatromanolaki, A., Harris, A. L. and Sivridis, E. 2006. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res. 66, 632-637. crossref(new window)

Markert, C. L., Shaklee, J. B. and Whitt, G. S. 1975. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189, 102-114. crossref(new window)

Metón, I., Fernández, F. and Baanante, I. V. 2003. Short-and long-term effects of refeeding on key enzyme activities in glycolysis-gluconeogenesis in the liver of gilthead seabream (Sparus aurata). Aquaculture 225, 99-107. crossref(new window)

Miller, K. M., Schulze, A. D., Ginther, N., Li, S., Patterson, D. A., Farrell, A. P. and Hinch, S. G. 2009. Salmon spawning migration: metabolic shifts and environmental triggers. Comp. Biochem. Physiol. D. 4, 75-89.

Moyes, C. D., Buck, L. T., Hochachka, P. W. and Suarez, R. K. 1989. Oxidative properties of carp red and white muscle. J. Exp. Biol. 143, 321-331.

Mukai, C. and Okuno, M. 2004. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol. Reprod. 71, 540-547. crossref(new window)

Navarro, I., and Gutie´rrez, J. 1995. Fasting and starvation. pp 393-434. vol 4. In: Hochachka, P. W. and Mommsen, T. P. (eds.), Biochemistry and molecular biology of fishes metabolic biochem. Elsevier. Amsterdam.

O′Brien, J., Kla, K. M., Hopkins, I. B., Malecki, E. A. and McKenna, M. C. 2007. Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem. Res. 32, 597-607. crossref(new window)

Park, E. M. and Yum, J. J. 2010. Purification and characterization of lactate dehydrogenase isozymes in Channa argus. J. Life Sci. 20, 260-268. crossref(new window)

Park, E. M. and Yum, J. J. 2011. Activities of lactate dehydrogenase and ratios of lactate dehydrogenase/citrate synthase in tissue of Odontobutis interrupta. J. Ind. Sci. Cheongju Univ. Korea. 28, 15-24.

Park, S. Y. and Yum, J. J. 1993. Lactate dehydrogenase isozymes of Cypriniform and Perciform fishes: Expression of the Ldh-C gene. J. Ind. Sci. 265-277.

Park, S. Y., Cho, S. K. and Yum, J. J. 2004. Characterization and evolutionary relationship of lactate dehydrogenase in liver of Lampetra japonica and liver-specific C4 isozyme in Gadus macrocephalus. J. Life Sci. 14, 708-715. crossref(new window)

Quistorff, B., Secher, N. H. and Van Lieshout, J. J. 2008. Lactate fuels the human brain during exercise. FASEB J. 22, 3443-3449. crossref(new window)

Scanlan, M. J., Simpson, A. J. and Old, L. J. 2004. The cancer/testis genes: review, standardization, and commentary. Cancer Immun. 4, 1.

Sensabaugh, G. F. and Kaplan, N. O. 1972. A lactate dehydrogenase specific to the liver of gadoid fish. J. Biol. Chem. 247, 585-593.

Shaklee, J. B., Kepes, K. L. and Whitt, G. S. 1973. Specialized lactate dehydrogenase isozymes: the molecular and genetic basis for the unique eye and liver LDHs of teleost fishes. J. Exp. Zool. 185, 217-240. crossref(new window)

Soengas, J. L., Strong, E. F., Fuentes, J., Veira, J. A. R. and Andrés, M. D. 1996. Food deprivation and refeeding in Atlantic salmon, Salmo salar: effects on brain and liver carbohydrate and ketone bodies metabolism. Fish Physiol. Biochem. 15, 491-511. crossref(new window)

Tylicki, A., Masztaleruk, D. and Strumilo, S. 2006. Differences in some properties of lactate dehydrogenase from muscles of the carp Cyprinus carpio and trout Salmo gairdneri. J. Evol. Biochem. Physiol. 42, 143-147. crossref(new window)

Val, A. L. and de Almeida-Val, V. M. F. 1995. pp. 224. Aerobic versus anaerobic pathways. Fishes of the amazone and environment: physiological and biochemical aspect. Springer. New York.

Van Roermund, C. W., Elgersma, Y., Singh, N., Wanders, R. J. and Tabak, H. F. 1995. The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J. 14, 3480.

Wang, Y., Wei, L., Wei, D., Li, X., Xu, L. and Wei, L. 2015. Testis-specific lactate dehydrogenase (LDH-C4) in skeletal muscle enhances apika’s sprint-running capacity in hypoxic environment. Int. J. Environm. Res. 12, 9218-9236.

Wang, T., Hung, C. C. and Randall, D. J. 2006. The comparative physiology of food deprivation: from feast to famine. Annu. Rev. Physiol. 68, 223-251. crossref(new window)

Wang, X., Perez, E., Liu, R., Yan, L. J., Mallet, R. T. and Yang, S. H. 2007. Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 1132, 1-9. crossref(new window)

Whitt, G. S. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. J. Exp. Zool. 175, 1-35. crossref(new window)

Whitt, G. S. and Booth, G. M. 1970. Localization of lactate dehydrogenase activity in the cells of the fish (Xiphophorus helleri) eye. J. Exp. Zool. 174, 215-224. crossref(new window)

Yeon, J. H. 2011. Charaterization of lactate dehydrogenase and expression of monocarboxylate transporters (MCT) 1, 2, 4 in liver from Carassius auratus. Doctoral dissertation. MS Thesis Cheongju Univ., Korea.

Yum, J. J. 2008. Characterization of lactate dehydrogenase in Acanthogobius hasta. J. Life Sci. 18, 264-272. crossref(new window)

Yum, J. J. and Ku, B. 2012. Biochemical properties of lactate dehydrogenase eye-specific C4 isozyme: Lepomis macrochirus and Micropterus salmoides. J. Life Sci. 22, 209-219. crossref(new window)

Zakhartsev, M., Johansen, T., Pörtner, H. O. and Blust, R. 2004. Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): genetic, kinetic and thermodynamic aspects. J. Exp. Biol. 207, 95-112. crossref(new window)