Advanced SearchSearch Tips
Investigation of the Gene Encoding Isotocin and its Expression in Cinnamon Clownfish, Amphiprion melanopus
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 2,  2016, pp.164-173
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.2.164
 Title & Authors
Investigation of the Gene Encoding Isotocin and its Expression in Cinnamon Clownfish, Amphiprion melanopus
Noh, Gyeong Eon; Choi, Mi-Jin; Min, Byung Hwa; Rho, Sum; Kim, Jong-Myoung;
  PDF(new window)
Isotocin (IT), a nonapeptide homolog of oxytocin in mammals, has been suggested to be involved in physiological processes including social behaviors, stress responses, and osmoregulation in teleost fish. To study its structure and function, the gene encoding the IT precursor was cloned from the genomic DNA and brain cDNA of the cinnamon clownfish, Amphiprion melanopus. The IT precursor gene consists of three exons separated by two introns, and encodes an open reading frame of 156 amino acid (aa) residues, comprising a putative signal peptide of 19 aa, a mature IT protein of 9 aa, a proteolytic processing site of 3 aa, and 125 aa of neurophysin. Tissue-specific analysis of the IT precursor transcript indicated its expression in the brain and gonads of A. melanopus. To examine its osmoregulatory effects, the salinity of the seawater (34 ppt) used for rearing A. melanopus was lowered to 15 ppt. Histological analysis of the gills indicated the apparent disappearance of an apical crypt on the surface of the gill lamella of A. melanopus, as pavement cells covered the surface upon acclimation to the lower salinity. The level of Na+/K+-ATPase activity in the gills was increased during the initial stage of acclimation, followed by a decrease to its normal level, suggesting its involvement in osmoregulation and homeostasis. The only slight increase in the level of IT precursor transcript in the A. melanopus brain upon low-salinity acclimation suggested that IT played a minor role, if any, in the process of osmoregulation.
Arginine vasotocin;cinnamon clownfish;isotocin;osmoregulation;
 Cited by
Banerjee, P., Chaube, R. and Joy, K. P. 2015. Molecular cloning, sequencing and tissue expression of vasotocin and isotocin precursor genes from Ostariophysian catfishes : phylogeny and evolutionary considerations in teleosts. Front. Neurosci. 9, 166.

Bœuf, G. and Payan, P. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C 130, 411-423.

Cowen, R. K. 2002. Larval dispersal and retention and consequences for population connectivity, pp. 149-169. In: Sale, P. F. (eds.), Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem. New York: Academic Press.

Evans, D. H., Piermarini, P. M. and Potts, W. T. W. 1999. Ionic transport in the fish gill epithelium. J. Exp. Zool. 283, 641-652. crossref(new window)

Godwin, J. and Thompson, R. 2012. Nonapeptides and social behavior in fishes. Horm. Behav. 61, 230-238. crossref(new window)

Gozdowska, M., Kleszczyńska, A., Sokołowska, E. and Kulczykowska, E. 2006. Arginine vasotocin (AVT) and isotocin (IT) in fish brain: Diurnal and seasonal variations. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 143, 330-334. crossref(new window)

Hart, P. R. and Purser, G. J. 1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder Rhombosolea tapirina Günther, 1862. Aquaculture 136, 221-230. crossref(new window)

Hirose, S., Kaneko, T., Naito, N. and Takei, Y. 2003. Molecular biology of major components of chloride cells. Comp. Biochem. Physiol. B 136, 593-620. crossref(new window)

Hoff, F. H. 1996. Conditioning, spawning and rearing of fish with emphasis on marine clownfish. Dade City, FL: Aquaculture Consultants Inc.

Imsland, A. K., Gústavsson, A., Gunnarsson, S., Foss, A., Árnason, J., Arnarson, I., Jónsson, A. F., Smáradóttir, H. and Thorarensen, H. 2008. Effects of reduced salinities on growth, feed conversion efficiency and blood physiology of juvenile Altantic halibut Hippoglossus hippoglossus L.. Aquaculture 274, 254-259. crossref(new window)

Karnaky, K. J. 1986. Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am. Zool. 26, 209-224. crossref(new window)

Katoh, F. and Kaneko, T. 2003. Short-term transformation and long-term replacement of branchial chloride cells in killifish transferred from seawater to freshwater, revealed by morphofunctional observations and a newly established “time-differential double fluorescent staining” technique. J. Exp. Biol. 206, 4113-4123. crossref(new window)

Kulczykowska, E. 2007. Arginine vasotocin and isotocin: towards their role in fish osmoregulation. pp. 151-176. In: Baldisserotto, B., Mancero Romero, J. M., Kapoor, B. G. (eds.) Fish Osmoregulation. Science Publisher, Enfield, N.H

Laiz-Carrión, R., Sangiao-Alvarellos, S., Guzmán, J. M., Martín del Río, M. P., Soengas, J. L. and Mancera, J. M. 2005. Growth performance of gilthead sea bream Sparus aurata in different osmotic conditions: Implications for osmoregulation and energy metabolism. Aquaculture 250, 849-861. crossref(new window)

Lin, C. H., Tsai, R. S. and Lee, T. H. 2004. Expression and distribution of Na, K-ATPase in gill and kidney of the spotted green pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp. Biochem. Physiol. 138, 287-295. crossref(new window)

Lin, Y. M., Chen, C. N., Yoshinaga, T., Tsai, S. C., Shen, I. D. and Lee, T. H. 2006. Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp. Biochem. Physiol. A 143, 406-415. crossref(new window)

Manzon, L. A. 2002. The role of prolactin in fish osmoregulation: a review. Gen. Comp. Endocrinol. 125, 291-310. crossref(new window)

Marshall, W. S., Lynch, E. M. and Cozzi, R. R. F. 2002. Redistribution of immunofluorescence of CFTR anion channel and NKCC cotransporter in chloride cells during adaptation of the killifish Fundulus heteroclitus to seawater. J. Exp. Biol. 205, 1265-1273.

McCormick, S. D. 2001. Endocrine control of osmoregulation in fish. Am. Zool. 282, 290-300.

Michael, S. W. 2008. Damselfishes & Anemonefishes. New Jersey: T.F.H. Publications Inc.

Moorhead, J. A. and Zeng, C. 2000. Development of captive breeding techniques for marine ornamental fish: a Review. Rev. Fish Sci. 18, 315-343.

Motohashi, E., Hasegawa, S., Mishiro, K. and Ando, H. 2009. Osmoregulatory responses of expression of vasotocin, isotocin, prolactin and growth hormone genes following hypoosmotic challenge in a stenohaline marine teleost, tiger puffer (Takifugu rubripes). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 154, 353-359. crossref(new window)

Noh, G. E., Rho, S., Chang, Y. J., Min, B. H. and Kim, J. M. 2013. Gene encoding prolactin in cinnamon clownfish Amphiprion melanopus and its expression upon acclimation to low salinities. Aquat. Biosys. 9, 1-9. crossref(new window)

Park, M. S., Kim, N. N., Shin, H. S., Min, B. H., Kil, G. S., Cho, S. H. and Choi, C. Y. 2012. Hypoosmotic shock adaptation by prolactin involves upregulation of arginine vasotocin and osmotic stress transcription factor 1 mRNA in the cinnamon clownfish Amphiprion melanopus. Anim. Cells Syst. 16, 391-399. crossref(new window)

O′Connell, L. A., Matthews, B. J. and Hofmann, H. A. 2012. Isotocin regulates paternal care in a monogamous cichlid fish. Horm. Behav. 61, 725-733. crossref(new window)

Scott, G. R., Richards, J. G., Forbush, B., Isenring, P. and Schulte, P. M. 2004. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am. J. Physiol. Cell. Physiol. 287, C300-C309. crossref(new window)

Shikano, T. and Fujio, Y. 1998. Immunolocalization of Na+/K+-ATPase in branchial epithelium of chum salmon fry during seawater and freshwater acclimation. J. Exp. Biol. 201, 3031-3040.

Shikano, T. and Fujio, Y. 1998. Relationships of salinity tolerance to immunolocalization of Na+, K+-ATPase in the gill epithelium during seawater and freshwater adaptation of the guppy, Poecilia reticulata. Zool. Sci. 15, 35-41. crossref(new window)

Specker, J. L., Schreiber, A. M., McArdle, M. E., Poholek, A., Henderson, J. and Bengtson, D. A. 1999. Metamorphosis in summer flounder: effects of acclimation to low and high salinities. Aquaculture 176, 145-154. crossref(new window)

Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. crossref(new window)

Tipsmark, C. K., Madsen, S. S. and Borski, R. J. 2004. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis). J. Exp. Zool. A Comp. Exp. Biol. 301, 979-991.

Urano, A., Kubokawa, K., Suzuki, M. and Ando, H. 1996. Comparative aspects of neurohypophyseal hormone genes. The peptidergic neuron; Krisch, B. and Mentlein, R. (eds) 211-219.

Wabnitz, C., Taylor, M., Green, E. and Razak, T. 2003. From ocean to aquarium : The global trade in marine ornamental species. In. Cambridge, UK: UNEP-WCMC; 6-54.

Warne, J. M., Hyodo, S., Harding, K. and Balment, R. J. 2000. Cloning of pro-vasotocin and pro-isotocin cDNAs from the flounder Platichthys flesus; levels of hypothalamic mRNA following acute osmotic challenge. Gen. Comp. Endocrinol. 119, 77-84. crossref(new window)

Wilkerson, J. D. 2001. Clownfish: A guide their captive care, breeding & natural history. New Jersey: T.F.H. Publications Inc..