Advanced SearchSearch Tips
Characteristics of Coagulase-negative Staphylococci Isolates from Dental Clinic Environments in Busan, Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 2,  2016, pp.220-225
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.2.220
 Title & Authors
Characteristics of Coagulase-negative Staphylococci Isolates from Dental Clinic Environments in Busan, Korea
Jung, Hye-In; Jung, So Young; Park, Indal; Bae, Il Kwon;
  PDF(new window)
Coagulase-negative staphylococci (CNS) have recently become the bacteria most frequently found in clinical infections. The aim of this study was to investigate the prevalence, antimicrobial susceptibilities, and molecular characteristics of CNS isolates from dental clinic environments in Busan, Korea. One hundred and fifty-four samples were collected from 10 dental clinics and dental hospitals in Busan from December 2014 to January 2015. Species were identified by matrix-assisted laser desorption/ionization–time-of-flight. Antimicrobial susceptibility was determined by disk diffusion methods. A polymerase chain reaction was performed to detect mecA, mupA gene, and SCCmec types. Of the 154 samples, 10(6.5%) isolates were identified as CNS (5 Staphylococcus epidermidis, 2 Staphylococcus capitis, 2 Staphylococcus, and 1 Staphylococcus haemolyticus). Among the 10 isolates, 6 were resistant to penicillin, 5 were resistant to gentamicin, 3 were resistant to tetracycline, and 2 were resistant to cefoxitin and erythromycin. However, clindamycin, ciprofloxacin, teicoplanin, and trimethoprim-sulfamethoxazole resistant isolates were not present. Genes encoding mecA were detected in 4 (2 S. warneri and 2 S. haemolyticus) isolates, and mupA in 1 (S. epidermidis) isolate. One methicillin-resistant CNS (S. warneri) isolate was determined as being of the SCCmec type I. It is concluded that CNS resistant to various antimicrobial agents was widely distributed in dental clinic environments in Korea.
Coagulase-negative staphylococci;dental clinic environment;mecA;mupA;SCCmec type;
 Cited by
Anthony, R. M., Connor, A. M., Power, E. G. M. and French, G. L. 1999. Use of the polymerase chain reaction for rapid detection of high-level mupirocin resistance in staphylococci. Eur. J. Clin. Microbiol. Infect. Dis. 18, 30-34. crossref(new window)

Baron, E. J. and Murray, P. R. 2007. Manual of Clinical Microbiology, pp. 393-395, 9th ed., ASM Press, Washington DC, USA.

Bastos, M. C., Mondino, P. J., Azevedo, M. L., Santos, K. R. and Giambiagi-de Marval, M. 1999. Molecular characterization and transfer among Staphylococcus strains of a plasmid conferring high-level resistance to mupirocin. Eur. J. Clin. Microbiol. Infect. Dis. 18, 393-398. crossref(new window)

Clinial and Laboratory Standards Institute (CLSI). 2014. Performance standards for antimicrobial susceptibility testing; Twenty-Fourth informational suspplement. M100-S24. Clinical and Laboratory Standards Insitute. 34, 68-75.

Cookson, B. D. 1998. The emergence of mupirocin resistance: a challenge to infection control and antibiotic prescribing practice. J. Antimicrob. Chemother. 41, 11-18. crossref(new window)

Gilbart, J. Perry, C. R. and Slocombe, B. 1993. High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob. Agents Chemother. 37, 32-38. crossref(new window)

Ito, T., Ma, X. X., Takeuchi, F., Okuma, K., Yuzawa, H. and Hiramatsu, K. 2004. Novel type V Staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 48, 2637-2651. crossref(new window)

Jones, M. E., Barry, A. L., Gardiner, R. V. and Packer, R. R. 1989. The prevalence of staphylococcal resistance to penicillinase resistant penicillins. A retrospective and prospective national surveillance trial of isolates from 40 medical centers. Diagn. Microbiol. Infect. Dis. 12, 385-394. crossref(new window)

Jung , W. K., Kang, E. J., Yoon, M. S., Kang, H. S., Kwak, J. S., Kim, J., Kim, S. M., Moon, S. E., Park, Y. M., Shin, S. H., Lee, M. O. and Han, M. D. 2002. Cross infection control in dentistry, pp.77-79, 1st ed., Daehan-narae. Krorea.

Kilic, A., Li, H., Stratton, C. W. and Tang, Y. W. 2006. Antimicrobial susceptibillity patterns and staphylococcal cassette chromosome mec types of as well as panton-valentine leukcidin occurrence among, methicillin-resistant Staphylococcus aureus isolates from childeren and adults in middle Tennessee. J. Clin. Microbiol. 44, 4436-4440. crossref(new window)

Kloos, W. E. and Bannerman, T. L. 1999. Stapylococcus and Micrococcus. In: Manual of clinical microbiology, pp. 264-282, 7th ed., ASM Press, Washington DC, USA.

Ko, K. S., Lee, J. Y., Suh, J. Y., Oh, W. S., Peck, K. R., Lee, N. Y. and Song, J. H. 2005. Distribution of major genotypes among methicillin-resistant Staphylococcus aureus clones in Asian countries. J. Clin. Microbiol. 43, 421-426. crossref(new window)

Lee, A. S., Macedo-Vinas, M., Francois, P., François, P., Renzi, G., Vernaz, N., Schrenzel, J., Pittet, D. and Harbarth, S. 2011. Trends in mupirocin resistance in methicillin-resistant Staphylococcus aureus and mupirocin consumption at a tertiary care hospital. J. Hosp. Infect. 77, 360-362. crossref(new window)

Leyden, J. J. 1990. Mupirocin: a new topical antibiotic. J. Am. Acad. Dermatol. 22, 879-883. crossref(new window)

Lim, K. T., Hanifah, Y. A., Mohd Yusof, M. Y. and Thong, K. L. 2010. Prevalence of mupirocin resistance methicillin-resistant Staphylococcus aureus strains isolated from a Malaysian hospital. Jpn. J. Infect. Dis. 63, 286-289.

Min, Y. H., Lee, J. S., Kwon, A. R., Shim, M. J. and Choi, E. C. 2012. Resistance determinants and antimicrobial susceptibilities of mupirocin-resistant staphylococci Isolated from a Korean hospital. Kor. J. Microb. 48, 93-101. crossref(new window)

Oliveria, D. C. and de Lencastre, H. 2002. Multiplex PCR strategy for rapid identificaion of strucral types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 46, 2155-2161. crossref(new window)

Park, S. Y. 2010. Prevalence, genotyping and antimicrobial susceptibility test of high- and low-level mupirocin resistant methicillin-resistant Staphylococcus aureus. master′s thesis, Wonkwang University, Iksan, Korea.

Park, S. Y., Kim, S. M. and Park, S. D. 2012. The prevalence, genotype and antimicrobial susceptibility of high- and low-level mupirocin resistant methicillin-resistant Staphylococcus aureus. Ann. Dermatol. 24, 32-38. crossref(new window)

Park, Y. C. 2013. Clinical characteristics of coagulase-negtative staphylococci from blood culture. master′s thesis, Chungnam National University, Daejeon, Korea.

Pérez-Roth, E., López-Aguilar, C., Alcoba-Florez, J. and Méndez-Alvarez, S. 2006. High-level mupirocin resistant within methicillin-resistant Staphylococcus aureus pandemic lineages. Antimicrob. Agents Chemother. 50, 3207-3211. crossref(new window)

Shin, E. S. 2004. Mupirocin resistance plasmid analysis of methicillin-resistant Staphylococci isolates from tertiary hospitals in South Korea. master′s thesis, Korea University, Seoul, Korea.

Sutherland. R., Boon, R. J., Griffin, K. E., Masters, P. J., Slcombe, B. and White, A. R. 1985. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob. Agents Chemother. 27, 495-498. crossref(new window)

Szymańska, J. 2007. Dental bio aerosol as an occupational hazard in a dentist′s workplace. Ann. Agric. Environ. Med. 14, 203-207.

Thomas, D. G., Wilson, J. M., Day, M. J. and Russell, A. D. 1999. Mupirocin resistance in staphylococci: development and transfer of isoleucyl-tRNA synthetase mediated resistance in vitro. J. Appl. Microbiol. 86, 715-722. crossref(new window)

Vuong, C. and Otto, M. 2002. Staphylococcus epidermidis infections. Microbes Infect. 4, 481-489. crossref(new window)

Yanagisawa, T., Lee, J. T., Wu, H. C. and Kawakami, M. 1994. Relationship of protein structure of isoleucyl-tRNA synthetase with pseudomonic acid resistance of Escherichia coli. A proposed mode of action of pseudomonic acid as an inhibitor of isoleucyl-tRNA synthetase. J. Biol. Chem. 269, 24304-24309.

Yoo, J. I., Shin, E. S., Chung, G. T., Lee, K. M., Yoo, J. S. and Lee, Y. S. 2010. Restriction fragment length polymorphism (RFLP) patterns and sequence analysis of high-level mupirocin-resistant methicillin-resistant staphylococci. Int. J. Antimicrob. Agents 35, 50-55. crossref(new window)

Yun, H. J., Lee, S. W., Yoon, G. M., Kim, S. Y., Choi, S., Lee, Y. S., Choi, E. C. and Kim, S. 2003. Prevalence and mechanisms of low- and high-level mupirocin resistance in staphylococci isolated from a Korean hospital. J. Antimicrob. Chemother. 51, 619-623. crossref(new window)