Advanced SearchSearch Tips
Molecular Docking Affinity Comparison of Curcumin and Nano-micelled Curcumin with Natural Sea Salt on Transthyretin
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 2,  2016, pp.253-258
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.2.253
 Title & Authors
Molecular Docking Affinity Comparison of Curcumin and Nano-micelled Curcumin with Natural Sea Salt on Transthyretin
Kim, Dong-Chan; Song, Pyo;
  PDF(new window)
In this study, nano-micelled curcumin was produced with natural sea salt with a view to comparing the in silico molecular binding affinity of pure curcumin compound to the active site of transthyretin. Using an optical light microscope and an electron microscope, it was found that the structure of the surface and the cross-section of nano-micelled curcumin was significantly different from natural sea salt. In particular, the crystal structure and nano-components in the nano-micelled curcumin were united, and the layer was more strongly stabilized than untreated salts. In the virtual 3D structure, in silico molecular docking study, the ligand binding affinity of nano-micelled curcumin to the transthyretin active site was found to be higher than that of pure curcumin. In addition, a nano-micelled curcumin formula interacted with more amino acid residues of transthyretin domains. The pharmacophore feature of the nano-micelled curcumin also showed more condensed and constrained features than normal curcumin. These results suggest that nano-micelled curcumin may effectively bind to and stabilize transthyretin, thereby regulating transthyretin-related physiological diseases. Collectively, the nano-micelled curcumin process suggests that normal curcumin can be modified more efficiently into the novel bio-functional chemical formula to stabilize the transthyretin structure. Therefore, the nano-micelled curcumin process can be applied to the field of the regulation of Alzheimer`s disease.
Binding affinity;curcumin;in silico study;nano-micelling;transthyretin;
 Cited by
커큐민과 대두 추출물의 RAW 264.7 대식세포에서의 항염증 효과 및 여드름 피부 개선효과에 관한 연구,유선희;문지선;

한국유화학회지, 2016. vol.33. 2, pp.311-323 crossref(new window)
Blake, C. C., Geisow, M. J., Oatley, S. J., Rerat, B. and Rerat, C. 1978. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 A. J. Mol. Biol. 121, 339-356. crossref(new window)

Chen, J., He, Z. M., Wang, F. L., Zhang, Z. S., Liu, X. Z., Zhai, D. D. and Chen, W. D. 2015. Curcumin and its promise as an anticancer drug: An analysis of its anticancer and antifungal effects in cancer and associated complications from invasive fungal infections. Eur. J. Pharmacol. 772, 33-42.

Ciccone, L., Tepshi, L., Nencetti, S. and Stura, E. A. 2015. Transthyretin complexes with curcumin and bromo-estradiol: evaluation of solubilizing multicomponent mixtures. N. Biotechnol. 32, 54-64. crossref(new window)

Ferreira, N., Saraiva, M. J. and Almeida, M. R. 2011. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett. 585, 2424-2430. crossref(new window)

Husseinil, G. A., Kherbeckl, L., Pitt, W. G., Hubbell, J. A., Christensen, D. A. and Velluto, D. 2015. Kinetics of ultrasonic drug delivery from targeted micelles. J. Nanosci. Nanotechnol. 15, 2099-2104. crossref(new window)

Khanmohammadi, M., Elmizadeh, H. and Ghasemi, K. 2015. Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. Iran. J. Pharm. Res. 14, 665-675.

Kim, D. C. and Lee, C. E. 2013. NXCL-4950, a novel composite applicable to peripheral skin, is capable of increasing skin temperature by enhancing capillary circulation. Clin. Exp. Dermatol. 38, 244-250. crossref(new window)

Kittitheeranun, P., Sanchavanakit, N., Sajomsang, W. and Dubas, S. T. 2010. Loading of curcumin in polyelectrolyte multilayers. Langmuir 26, 6869-6873. crossref(new window)

Lu, Y. and Park, K. 2013. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm. 453, 198-214. crossref(new window)

Masbuchin, A. N., Rohman, M. S., Putri, J. F., Cahyaningtyas, M. and Widodo. 2015. 279(Val-->Phe) Polymorphism of lipoprotein-associated phospholipase A2 resulted in changes of folding kinetics and recognition to substrate. Comput. Biol. Chem. 59 Pt A, 199-207. crossref(new window)

Mohan, M., James, P., Valsalan, R. and Nazeem, P. A. 2015. Molecular docking studies of phytochemicals from Phyllanthus niruri against Hepatitis B DNA Polymerase. Bioinformation 11, 426-431. crossref(new window)

Naksuriya, O., Okonogi, S., Schiffelers, R. M. and Hennink, W. E. 2014. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35, 3365-3383. crossref(new window)

Pullakhandam, R., Srinivas, P. N., Nair, M. K. and Reddy, G. B. 2009. Binding and stabilization of transthyretin by curcumin. Arch. Biochem. Biophys. 485, 115-119. crossref(new window)

Rao, P. P., Mohamed, T., Teckwani, K. and Tin, G. 2015. Curcumin Binding to Beta Amyloid: A Computational Study. Chem. Biol. Drug. Des. 86, 813-820. crossref(new window)

Saelices, L., Johnson, L. M., Liang, W. Y., Sawaya, M. R., Cascio, D., Ruchala, P., Whitelegge, J., Jiang, L., Riek, R. and Eisenberg, D. S. 2015. Uncovering the Mechanism of Aggregation of Human Transthyretin. J. Biol. Chem. 290, 28932-28943. crossref(new window)

Sordillo, L. A., Sordillo, P. P. and Helson, L. 2015. Curcumin for the Treatment of Glioblastoma. Anticancer. Res. 35, 6373-6378.

Stein, T. D., Anders, N. J., DeCarli, C., Chan, S. L., Mattson, M. P. and Johnson, J. A. 2004. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J. Neurosci. 24, 7707-7717. crossref(new window)

Suh, W. H., Suslick, K. S., Stucky, G. D. and Suh, Y. H. 2009. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87, 133-170. crossref(new window)

Sunde, M., Richardson, S. J., Chang, L., Pettersson, T. M., Schreiber, G. and Blake, C. C. 1996. The crystal structure of transthyretin from chicken. Eur. J. Biochem. 236, 491-499. crossref(new window)

Tang, Y. P., Haslam, S. Z., Conrad, S. E. and Sisk, C. L. 2004. Estrogen increases brain expression of the mRNA encoding transthyretin, an amyloid beta scavenger protein. J. Alzheimers. Dis. 6, 413-420. crossref(new window)

Trott, O. and Olson, A. J. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461.

Turnbull, E. R., Kaunda, K., Harris, J. B., Kapata, N., Muvwimi, M. W., Kruuner, A., Henostroza, G. and Reid, S. E. 2011. An evaluation of the performance and acceptability of three LED fluorescent microscopes in Zambia: lessons learnt for scale-up. PLoS. One. 6, e27125. crossref(new window)

Xia, H., Zhao, Y. and Tong, R. 2016. Ultrasound-mediated polymeric micelle drug delivery. Adv. Exp. Med. Biol. 880, 365-384. crossref(new window)

Yallapu, M. M., Ebeling, M. C., Chauhan, N., Jaggi, M. and Chauhan, S. C. 2011. Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes. Int. J. Nanomedicine 6, 2779-2790.

Yallapu, M. M., Nagesh, P. K., Jaggi, M. and Chauhan, S. C. 2015. Therapeutic applications of curcumin nanoformulations. AAPS J. 17, 1341-1356. crossref(new window)

Zheng, W., Lu, Y. M., Lu, G. Y., Zhao, Q., Cheung, O. and Blaner, W. S. 2001. Transthyretin, thyroxine, and retinol-binding protein in human cerebrospinal fluid: effect of lead exposure. Toxicol. Sci. 61, 107-114. crossref(new window)

Zheng, Z., Sun, Y., Liu, Z., Zhang, M., Li, C. and Cai, H. 2015. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug. Des. Devel. Ther. 9, 4931-4942.