JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 2,  2016, pp.265-274
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.2.265
 Title & Authors
Bacterial Toxin-antitoxin Systems and Their Biotechnological Applications
Kim, Yoonji; Hwang, Jihwan;
  PDF(new window)
 Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic modules that are evolutionally conserved in bacteria and archaea. TA systems composed of an intracellular toxin and its antidote (antitoxin) are currently classified into five types. Commonly, activation of toxins under stress conditions inhibits diverse cellular processes and consequently induces cell death or reversible growth inhibition. These effects of toxins play various physiological roles in such as regulation of gene expression, growth control (stress response), programmed cell arrest, persister cells, programmed cell death, phage protection, stabilization of mobile genetic elements or postsegregational killing of plasmid-free cells. Accordingly, bacterial TA systems are commonly considered as stress-responsive genetic modules. However, molecule screening for activation of toxin in TA system is available as development of antimicrobial agents. In addition, cytotoxic effect induced by toxin is used as effective cloning method with antitoxic effect of antitoxin; consequently cells containing cloning vector inserted a target gene can survive and false-positive transformants are removed. Also, TA system is applicable to efficient single protein production in biotechnology industry because toxins that are site-specific ribonuclease inhibit protein synthesis except for target protein. Furthermore, some TA systems that induce apoptosis in eukaryotic cells such as cancer cells or virus-infected cells would have a wide range of applications in eukaryotes, and it will lead to new ways of treating human disease. In this review, we summarize the current knowledge on bacterial TA systems and their applications.
 Keywords
Antitoxin;antimicrobial;anticancer;antiviral;toxin;
 Language
Korean
 Cited by
 References
1.
Bertram, R. and Schuster, C. F. 2014. Post-transcriptional regulation of gene expression in bacterial pathogens by toxin-antitoxin systems. Front. Cell. Infect. Microbiol. 4, 6.

2.
Bi, E., Dai, K., Subbarao, S., Beall, B. and Lutkenhaus, J. 1991. FtsZ and cell division. Res. Microbiol. 142, 249-252. crossref(new window)

3.
Brown, J. M. and Shaw, K. J. 2003. A novel family of Escherichia coli toxin-antitoxin gene pairs. J. Bacteriol. 185, 6600-6608. crossref(new window)

4.
Brzozowska, I. and Zielenkiewicz, U. 2013. Regulation of toxin-antitoxin systems by proteolysis. Plasmid 70, 33-41. crossref(new window)

5.
Bukowski, M., Lyzen, R., Helbin, W. M., Bonar, E., Szalewska-Palasz, A., Wegrzyn, G., Dubin, G., Dubin, A. and Wladyka, B. 2013. A regulatory role for Staphylococcus aureus toxin-antitoxin system PemIKSa. Nat. Commun. 4, 2012.

6.
Cook, G. M., Robson, J. R., Frampton, R. A., McKenzie, J., Przybilski, R., Fineran, P. C. and Arcus, V. L. 2013. Ribonucleases in bacterial toxin-antitoxin systems. Biochim. Biophys. Acta 1829, 523-531. crossref(new window)

7.
de la Cueva-Mendez, G., Mills, A. D., Clay-Farrace, L., Diaz-Orejas, R. and Laskey, R. A. 2003. Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis. EMBO J. 22, 246-251. crossref(new window)

8.
Dy, R. L., Richter, C., Salmond, G. P. C. and Fineran, P. C. 2014. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu. Rev. Virol. 1, 307-331. crossref(new window)

9.
Fineran, P. C., Blower, T. R., Foulds, I. J., Humphreys, D. P., Lilley, K. S. and Salmond, G. P. 2009. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc. Natl. Acad. Sci. USA 106, 894-899. crossref(new window)

10.
Fozo, E. M., Hemm, M. R. and Storz, G. 2008. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev. 72, 579-589. crossref(new window)

11.
Gerdes, K., Christensen, S. K. and Lobner-Olesen, A. 2005. Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 3, 371-382. crossref(new window)

12.
Gerdes, K., Thisted, T. and Martinussen, J. 1990. Mechanism of post-segregational killing by the hok/sok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid-free cells. Mol. Microbiol. 4, 1807-1818. crossref(new window)

13.
Germain, E., Castro-Roa, D., Zenkin, N. and Gerdes, K. 2013. Molecular mechanism of bacterial persistence by HipA. Mol. Cell 52, 248-254. crossref(new window)

14.
Goeders, N. and Van Melderen, L. 2014. Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 6, 304-324. crossref(new window)

15.
Hallez, R., Geeraerts, D., Sterckx, Y., Mine, N., Loris, R. and Van Melderen, L. 2010. New toxins homologous to ParE belonging to three-component toxin-antitoxin systems in Escherichia coli O157:H7. Mol. Microbiol. 76, 719-732. crossref(new window)

16.
Hayes, F. 2003. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496-1499. crossref(new window)

17.
Hurley, J. M. and Woychik, N. A. 2009. Bacterial toxin HigB associates with ribosomes and mediates translation-dependent mRNA cleavage at A-rich sites. J. Biol. Chem. 284, 18605-18613. crossref(new window)

18.
Jaffe, A., Ogura, T. and Hiraga, S. 1985. Effects of the ccd function of the F plasmid on bacterial growth. J. Bacteriol. 163, 841-849.

19.
Jiang, Y., Pogliano, J., Helinski, D. R. and Konieczny, I. 2002. ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol. Microbiol. 44, 971-979. crossref(new window)

20.
Jones, L. J., Carballido-Lopez, R. and Errington, J. 2001. Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104, 913-922. crossref(new window)

21.
Jorgensen, M. G., Pandey, D. P., Jaskolska, M. and Gerdes, K. 2009. HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. J. Bacteriol. 191, 1191-1199. crossref(new window)

22.
Kawano, M., Aravind, L. and Storz, G. 2007. An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol. Microbiol. 64, 738-754. crossref(new window)

23.
Lee, M. W., Rogers, E. E. and Stenger, D. C. 2012. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease. Phytopathology 102, 32-40. crossref(new window)

24.
Leplae, R., Geeraerts, D., Hallez, R., Guglielmini, J., Dreze, P. and Van Melderen, L. 2011. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 39, 5513-5525. crossref(new window)

25.
Lioy, V. S., Rey, O., Balsa, D., Pellicer, T. and Alonso, J. C. 2010. A toxin-antitoxin module as a target for antimicrobial development. Plasmid 63, 31-39. crossref(new window)

26.
Liu, M., Zhang, Y., Inouye, M. and Woychik, N. A. 2008. Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. Proc. Natl. Acad. Sci. USA 105, 5885-5890. crossref(new window)

27.
Lopes, A. P., Lopes, L. M., Fraga, T. R., Chura-Chambi, R. M., Sanson, A. L., Cheng, E., Nakajima, E., Morganti, L. and Martins, E. A. 2014. VapC from the leptospiral VapBC toxin-antitoxin module displays ribonuclease activity on the initiator tRNA. PLoS One 9, e101678. crossref(new window)

28.
Maezato, Y., Daugherty, A., Dana, K., Soo, E., Cooper, C., Tachdjian, S., Kelly, R. M. and Blum, P. 2011. VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. RNA 17, 1381-1392. crossref(new window)

29.
Masuda, H., Tan, Q., Awano, N., Yamaguchi, Y. and Inouye, M. 2012. A novel membrane-bound toxin for cell division, CptA (YgfX), inhibits polymerization of cytoskeleton proteins, FtsZ and MreB, in Escherichia coli. FEMS Microbiol. Lett. 328, 174-181. crossref(new window)

30.
McKenzie, J. L., Duyvestyn, J. M., Smith, T., Bendak, K., Mackay, J., Cursons, R., Cook, G. M. and Arcus, V. L. 2012. Determination of ribonuclease sequence-specificity using Pentaprobes and mass spectrometry. RNA 18, 1267-1278. crossref(new window)

31.
Miallau, L., Faller, M., Chiang, J., Arbing, M., Guo, F., Cascio, D. and Eisenberg, D. 2009. Structure and proposed activity of a member of the VapBC family of toxin-antitoxin systems. VapBC-5 from Mycobacterium tuberculosis. J. Biol. Chem. 284, 276-283. crossref(new window)

32.
Miki, T., Park, J. A., Nagao, K., Murayama, N. and Horiuchi, T. 1992. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J. Mol. Biol. 225, 39-52. crossref(new window)

33.
Munoz-Gomez, A. J., Lemonnier, M., Santos-Sierra, S., Berzal-Herranz, A. and Diaz-Orejas, R. 2005. RNase/anti-RNase activities of the bacterial parD toxin-antitoxin system. J. Bacteriol. 187, 3151-3157. crossref(new window)

34.
Mutschler, H. and Meinhart, A. 2011. Epsilon/zeta systems: their role in resistance, virulence, and their potential for antibiotic development. J. Mol. Med. (Berl) 89, 1183-1194. crossref(new window)

35.
Nariya, H. and Inouye, M. 2008. MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55-66. crossref(new window)

36.
Okamoto, M., Chono, H., Kawano, Y., Saito, N., Tsuda, H., Inoue, K., Kato, I., Mineno, J. and Baba, M. 2013. Sustained inhibition of HIV-1 replication by conditional expression of the E. coli-derived endoribonuclease MazF in CD4+ T cells. Hum. Gene Ther. Methods 24, 94-103. crossref(new window)

37.
Overgaard, M., Borch, J., Jorgensen, M. G. and Gerdes, K. 2008. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol. Microbiol. 69, 841-857. crossref(new window)

38.
Pandey, D. P. and Gerdes, K. 2005. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33, 966-976. crossref(new window)

39.
Park, J. H., Yamaguchi, Y. and Inouye, M. 2011. Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase. FEBS Lett. 585, 2526-2532. crossref(new window)

40.
Park, J. H., Yamaguchi, Y. and Inouye, M. 2012. Intramolecular regulation of the sequence-specific mRNA interferase activity of MazF fused to a MazE fragment with a linker cleavable by specific proteases. Appl. Environ. Microbiol. 78, 3794-3799. crossref(new window)

41.
Park, S. J., Son, W. S. and Lee, B. J. 2013. Structural overview of toxin-antitoxin systems in infectious bacteria: a target for developing antimicrobial agents. Biochim. Biophys. Acta 1834, 1155-1167. crossref(new window)

42.
Ramage, H. R., Connolly, L. E. and Cox, J. S. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 5, e1000767. crossref(new window)

43.
Sala, A., Bordes, P. and Genevaux, P. 2014. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 6, 1002-1020. crossref(new window)

44.
Schifano, J. M., Edifor, R., Sharp, J. D., Ouyang, M., Konkimalla, A., Husson, R. N. and Woychik, N. A. 2013. Mycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site. Proc. Natl. Acad. Sci. USA 110, 8501-8506. crossref(new window)

45.
Schifano, J. M., Vvedenskaya, I. O., Knoblauch, J. G., Ouyang, M., Nickels, B. E. and Woychik, N. A. 2014. An RNA-seq method for defining endoribonuclease cleavage specificity identifies dual rRNA substrates for toxin MazF-mt3. Nat. Commun. 5, 3538.

46.
Sharp, J. D., Cruz, J. W., Raman, S., Inouye, M., Husson, R. N. and Woychik, N. A. 2012. Growth and translation inhibition through sequence-specific RNA binding by Mycobacterium tuberculosis VapC toxin. J. Biol. Chem. 287, 12835-12847. crossref(new window)

47.
Siboo, I. R., Chambers, H. F. and Sullam, P. M. 2005. Role of SraP, a Serine-rich surface protein of staphylococcus aureus, in binding to human platelets. Infect. Immun. 73, 2273-2280. crossref(new window)

48.
Stieber, D., Gabant, P. and Szpirer, C. 2008. The art of selective killing: plasmid toxin/antitoxin systems and their technological applications. BioTechniques 45, 344-346. crossref(new window)

49.
Suzuki, M., Zhang, J., Liu, M., Woychik, N. A. and Inouye, M. 2005. Single protein production in living cells facilitated by an mRNA interferase. Mol. Cell 18, 253-261. crossref(new window)

50.
Unterholzner, S. J., Poppenberger, B. and Rozhon, W. 2013. Toxin-antitoxin systems: Biology, identification, and application. Mob. Genet. Elements 3, e26219. crossref(new window)

51.
Van Melderen, L., Bernard, P. and Couturier, M. 1994. Londependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol. Microbiol. 11, 1151-1157. crossref(new window)

52.
Vesper, O., Amitai, S., Belitsky, M., Byrgazov, K., Kaberdina, A. C., Engelberg-Kulka, H. and Moll, I. 2011. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 147, 147-157. crossref(new window)

53.
Vogel, J., Argaman, L., Wagner, E. G. and Altuvia, S. 2004. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr. Biol. 14, 2271-2276. crossref(new window)

54.
Wang, X., Lord, D. M., Cheng, H. Y., Osbourne, D. O., Hong, S. H., Sanchez-Torres, V., Quiroga, C., Zheng, K., Herrmann, T., Peti, W., Benedik, M. J., Page, R. and Wood, T. K. 2012. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8, 855-861. crossref(new window)

55.
Wang, X., Lord, D. M., Hong, S. H., Peti, W., Benedik, M. J., Page, R. and Wood, T. K. 2013. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ. Microbiol. 15, 1734-1744. crossref(new window)

56.
Weaver, K. E., Ehli, E. A., Nelson, J. S. and Patel, S. 2004. Antisense RNA regulation by stable complex formation in the Enterococcus faecalis plasmid pAD1 par addiction system. J. Bacteriol. 186, 6400-6408. crossref(new window)

57.
Weaver, K. E., Weaver, D. M., Wells, C. L., Waters, C. M., Gardner, M. E. and Ehli, E. A. 2003. Enterococcus faecalis plasmid pAD1-encoded Fst toxin affects membrane permeability and alters cellular responses to lantibiotics. J. Bacteriol. 185, 2169-2177. crossref(new window)

58.
Williams, J. J. and Hergenrother, P. J. 2012. Artificial activation of toxin-antitoxin systems as an antibacterial strategy. Trends Microbiol. 20, 291-298. crossref(new window)

59.
Winther, K. S., Brodersen, D. E., Brown, A. K. and Gerdes, K. 2013. VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nat. Commun. 4, 2796.

60.
Winther, K. S. and Gerdes, K. 2011. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Proc. Natl. Acad. Sci. USA 108, 7403-7407. crossref(new window)

61.
Yamaguchi, Y. and Inouye, M. 2009. mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. Prog. Mol. Biol. Transl. Sci. 85, 467-500. crossref(new window)

62.
Yamaguchi, Y., Park, J. H. and Inouye, M. 2009. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284, 28746-28753. crossref(new window)

63.
Yamaguchi, Y., Park, J. H. and Inouye, M. 2011. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61-79. crossref(new window)

64.
Zhang, J., Zhang, Y., Zhu, L., Suzuki, M. and Inouye, M. 2004. Interference of mRNA function by sequence-specific endoribonuclease PemK. J. Biol. Chem. 279, 20678-20684. crossref(new window)

65.
Zhang, Y. and Inouye, M. 2011. RatA (YfjG), an Escherichia coli toxin, inhibits 70S ribosome association to block translation initiation. Mol. Microbiol. 79, 1418-1429. crossref(new window)

66.
Zhang, Y., Zhang, J., Hoeflich, K. P., Ikura, M., Qing, G. and Inouye, M. 2003. MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol. Cell 12, 913-923. crossref(new window)

67.
Zhang, Y., Zhu, L., Zhang, J. and Inouye, M. 2005. Characterization of ChpBK, an mRNA interferase from Escherichia coli. J. Biol. Chem. 280, 26080-26088. crossref(new window)

68.
Zhu, L., Inoue, K., Yoshizumi, S., Kobayashi, H., Zhang, Y., Ouyang, M., Kato, F., Sugai, M. and Inouye, M. 2009. Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. J. Bacteriol. 191, 3248-3255. crossref(new window)

69.
Zhu, L., Zhang, Y., Teh, J. S., Zhang, J., Connell, N., Rubin, H. and Inouye, M. 2006. Characterization of mRNA interferases from Mycobacterium tuberculosis. J. Biol. Chem. 281, 18638-18643. crossref(new window)