Advanced SearchSearch Tips
Crystal Structure of Thiolase from Clostridium butyricum
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 3,  2016, pp.353-358
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.3.353
 Title & Authors
Crystal Structure of Thiolase from Clostridium butyricum
Kim, Eun-Jung; Kim, Kyung-Jin;
  PDF(new window)
Thiolase is an enzyme that catalyzes condensation reactions between two acetyl-CoA molecules to produce acetoacetyl-CoA. As thiolase catalyzes is the first reaction in the production of n-butanol, knowledge of the molecular and regulatory mechanism of the enzyme is crucial for synthesizing high-value biofuel. Thiolase from Clostridium butyricum (CbTHL) was expressed, purified, and crystallized. X-ray diffraction data were collected from the crystals, and the 3-dimentional structure of the enzyme was determined at 2.0 Å. The overall structure of thiolase was similar to that of type II biosynthetic thiolases, such as thiolase from C. acetobutylicum (CaTHL). The superposition of this structure with that of CaTHL complexed with CoA revealed the residues that comprise the catalytic and substrate binding sites of CbTHL. The catalytic site of CbTHL contains three conserved residues, Cys88, His349, and Cys379, which may function as a covalent nucleophile, general base, and second nucleophile, respectively. For substrate binding, the way in which CbTHL stabilized the ADP moiety of CoA was unlike that of other thiolases, whereas the stabilization of β-mercaptoethyamine and pantothenic acid moieties of CoA was quite similar to that of other enzymes. The most interesting observation in the CbTHL structure was that the enzyme was regulated through redox-switch modulation, using a reversible disulfide bond.
Clostridium butyricum;disulfide bond;redox-switch modulation;structure;thiolase;
 Cited by
Atsumi, S., Hanai, T. and Liao, J. C. 2008. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86-89. crossref(new window)

Durre, P. 2007. Biobutanol: an attractive biofuel. Biotechnol. J. 2, 1525-1534. crossref(new window)

Durre, P. 2008. Fermentative butanol production: bulk chemical and biofuel. Ann. N.Y. Acad. Sci. 1125, 353-362. crossref(new window)

Emsley, P. and Cowtan, K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. crossref(new window)

Ezeji, T., Milne, C., Price, N. D. and Blaschek, H. P. 2010. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl. Microbiol. Biotechnol. 85, 1697-1712. crossref(new window)

Felnagle, E. A., Chaubey, A., Noey, E. L., Houk, K. N. and Liao, J. C. 2012. Engineering synthetic recursive pathways to generate non-natural small molecules. Nat. Chem. Biol. 8, 518-526. crossref(new window)

Inui, M., Suda, M., Kimura, S., Yasuda, K., Suzuki, H., Toda, H., Yamamoto, S., Okino, S., Suzuki, N. and Yukawa, H. 2008. Expression of clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol. 77, 1305-1316 crossref(new window)

Jones, D. T. and Woods, D. R. 1986. Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484-524.

Kim, E. J., Kim, J., Ahn, J. W., Kim, Y. J., Chang, J. H. and Kim, K. J. 2014. Crystal structure of (S)-3-Hydroxybutyryl- CoA dehydrogenase from clostridium butyricum and its mutations that enhance reaction kinetics. J. Microbiol. Biotechnol. 24, 1636-1643. crossref(new window)

Kim, E. J., Kim, Y. J. and Kim, K. J. 2014. Structural insights into substrate specificity of crotonase from the n-butanol producing bacterium clostridium acetobutylicum. Biochem. Biophys. Res. Commun. 451, 431-435. crossref(new window)

Kim, E. J., Son, H. F., Kim, S., Ahn, J. W. and Kim, K. J. 2014. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16. Biochem. Biophys. Res. Commun. 444, 365-369. crossref(new window)

Kim, E. J. and Kim, K. J. 2014. Crystal structure and biochemical characterization of PhaA from Ralstonia eutropha, a polyhydroxyalkanoate-producing bacterium. Biochem. Biophys. Res. Commun. 452, 124-129. crossref(new window)

Kim, S., Jang, Y. S., Ha, S. C., Ahn, J. W., Kim, E. J., Lim, J. H., Cho, C., Ryu, Y. S., Lee, S. K., Lee, S. Y. and Kim, K. J. 2015. Redox-switch regulatory mechanism of thiolase from clostridium acetobutylicum. Nat. Commun. 6, 8410. crossref(new window)

Kursula, P., Sikkilä, H., Fukao, T., Kondo, N. and Wierenga, R. K. 2005. High resolution crystal structures of human cytosolic thiolase (CT): acomparison of the active sites of human CT, bacterial thiolase, andbacterial KAS I. J. Mol. Biol. 347, 189-201. crossref(new window)

Lee, S. K., Chou, H., Ham, T. S., Lee, T. S. and Keasling, J. D. 2008. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19, 556-563. crossref(new window)

Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J. and Jung, K. S. 2008. Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101, 209-228. crossref(new window)

Matthews, B. W. 1968. Solvent content of protein crystals. J. Mol. Biol. 33, 491-497. crossref(new window)

Mitchell, W. J. 1998. Physiology of carbohydrate to solvent conversion by clostridia. Adv. Microb. Physiol. 39, 31-130.

Mathieu, M., Zeelen, J. P., Pauptit, R. A., Erdmann, R., Kunau, W. H. and Wierenga, R. K. 1994. The 2.8 A crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered alpha beta alpha beta alpha structure constructed from two core domains of identical topology. Structure 2, 797-808. crossref(new window)

Mathieu, M., Zeelen, J. P., Pauptit, R. A., Erdmann, R., Kunau, W. H. and Wierenga, R. K. 1997. The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. J. Mol. Biol. 273, 714-728. crossref(new window)

Meriläinen, G., Poikela, V., Kursula, P. and Wierenga, R. K. 2009. The thiolase reaction mechanism: the importance of Asn316 and His348 forstabilizing the enolate intermediate of the Claisen condensation. Biochemistry 48, 11011-11025. crossref(new window)

Meriläinen, G., Schmitz, W., Wierenga, R. K. and Kursula, P. 2008. The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productivemode of substrate binding in bacterial biosynthetic thiolase, a thioester dependent enzyme. FEBS J. 275, 6136-6148. crossref(new window)

Modis, Y. and Wierenga, R. K. 1999. A biosynthetic thiolase in complex with areaction intermediate: the crystal structure provides new insights into the catalytic mechanism. Structure 7, 1279-1290. crossref(new window)

Modis, Y. and Wierenga, R. K. 2000. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. J. Mol. Biol. 297, 1171-1182. crossref(new window)

Murshudov, G. N., Vagin, A. A. and Dodson, E. J. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255. crossref(new window)

Nielsen, D. R., Leonard, E., Yoon, S. H., Tseng, H. C., Yuan, C. and Prather, K. L. 2009. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 11, 262-273. crossref(new window)

Otwinowski, Z. and Minor, W. 1997. Processing of X-ray diffraction data. Methods Enzymo. 276, 307-326. crossref(new window)

Papoutsakis, E. T. 2008. Engineering solventogenic clostridia. Curr.Opin. Biotechnol. 19, 420-429. crossref(new window)

Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., Ouellet, M. and Keasling, J. D. 2008. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact. 7, 36. crossref(new window)

Vagin, A. and Teplyakov, A. 2010. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22-25. crossref(new window)