Advanced SearchSearch Tips
Structure and Biological Function of Plant CRL4, and Its Involvement in Plant Cellular Events
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 3,  2016, pp.364-375
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.3.364
 Title & Authors
Structure and Biological Function of Plant CRL4, and Its Involvement in Plant Cellular Events
Lee, Jae-Hoon;
  PDF(new window)
Post-translational modification is an efficient process to rapidly transduce external stimulus into cellular response. Ubiquitination is a typical post-translational modification which is a highly conserved process in eukaryotes. UPS (Ubiquitin/Proteasome System) mediated by the ubiquitination is to target diverse cellular proteins for degradation. Among E3 ubiquitin ligases that function as the key determinant for substrate recognition, CRL (cullin–RING E3 ubiquitin ligase) is the largest family and forms the complex composed of cullin, RBX1, adaptor and substrate receptor. Although CRL1, also known as SCF complex, has been widely researched for its biological role, the functional studies of CRL4 have been relatively elusive. In Arabidopsis, there are 119 substrate receptors named DCAF (DDB1 CUL4 Associated Factor) proteins for CRL4 and a fraction of DCAF proteins have been identified for their potential functions so far. In this paper, current understanding on structure and biological roles of plant CRL4 complexes in a diverse of cellular events is reviewed, especially focusing on CRL4 substrate receptors. Moreover, the regulatory mechanism of CRL4’s activity is also introduced. These studies will be helpful to further understand the signal transduction pathways in which such CRL4 complexes are involved and give a clue to establish the action network of entire CRL4 complexes in plants.
Arabidopsis;CRL4;DCAF;post-translational modification;ubiquitination;
 Cited by
Alexandre, C., Möller-Steinbach, Y., Schönrock, N., Gruissem, W. and Hennig, L. 2009. Arabidopsis MSI1 is required for negative regulation of the response to drought stress. Mol. Plant 2, 675-687. crossref(new window)

Angers, S., Li, T., Yi, X., MacCoss, M. J., Moon, R. T. and Zheng, N. 2006. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590-593.

Bernhardt, A., Lechner, E., Hano, P., Schade, V., Dieterle, M., Anders, M., Dubin, M. J., Benvenuto, G., Bowler, C., Genschik, P. and Hellmann, H. 2006. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J. 47, 591-603. crossref(new window)

Bernhardt, A., Mooney, S. and Hellmann, H. 2010. Arabidopsis DDB1a and DDB1b are critical for embryo development. Planta 232, 555-566. crossref(new window)

Bhalerao, R. P., Salchert, K., Bakó, L., Okrész, L., Szabados, L., Muranaka, T., Machida, Y., Schell, J. and Koncz, C. 1999. Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proc. Natl. Acad. Sci. USA 96, 5322-5327. crossref(new window)

Biedermann, S. and Hellmann, H. 2010. The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana. Plant J. 62, 404-415. crossref(new window)

Biedermann, S. and Hellmann, H. 2011. WD40 and CUL4-based E3 ligases: lubricating all aspects of life. Trends Plant Sci. 16, 38-46.

Bjerkan, K. N. and Grini, P. E. 2013. The Arabidopsis DDB1 interacting protein WDR55 is required for vegetative development. Plant Signal. Behav. 8, e25347. crossref(new window)

Bjerkan, K. N., Jung-Roméo, S., Jürgens, G., Genschik, P., Grini, P. E. 2012. Arabidopsis WD repeat domain55 Interacts with DNA damaged binding protein1 and is required for apical patterning in the embryo. Plant Cell 24, 1013-1033. crossref(new window)

Bulatov, E. and Ciulli, A. 2015. Targeting Cullin-ring E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem. J. 467, 365-386. crossref(new window)

Chen, H., Shen, Y., Tang, X., Yu, L., Wang, J., Guo, L., Zhang, Y., Zhang, H., Feng, S., Strickland, E., Zheng, N. and Deng, X. W. 2006. Arabidopsis Cullin4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18, 1991-2004. crossref(new window)

Chu, G. and Chang, E. 1988. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242, 564-567. crossref(new window)

Dharmasiri, S., Dharmasiri, N., Hellmann, H. and Estelle, M. 2003. The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. EMBO J. 22, 1762-1770. crossref(new window)

Dohmann, E. M., Kuhnle, C. and Schwechheimer, C. 2005. Loss of the Constitutive photomorphogenic9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. Plant Cell 17, 1967-1978. crossref(new window)

Dreher, K. and Callis, J. 2007. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 99, 787-822. crossref(new window)

Dumbliauskas, E., Lechner, E., Jaciubek, M., Berr, A., Pazhouhandeh, M., Alioua, M., Cognat, V., Brukhin, V., Koncz, C., Grossniklaus, U., Molinier, J. and Genschik, P. 2011. The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain MEDEA parental imprinting. EMBO J. 30, 731-743. crossref(new window)

Elsasser, S., Gali, R. R., Schwickart, M., Larsen, C. N., Leggett, D. S., Muller, B., Feng, M. T., Tubing, F., Dittmar, G. A. and Finley, D. 2002. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 4, 725-730. crossref(new window)

Feng, S., Shen, Y., Sullivan, J. A., Rubio, V., Xiong, Y., Sun, T. P. and Deng, X. W. 2004. Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasomemediated protein degradation. Plant Cell 16,1870-1882. crossref(new window)

Ganpudi, A. L. and Schroeder, D. F. 2013. Genetic interactions of Arabidopsis thaliana damaged DNA binding protein 1B (DDB1B) with DDB1A, DET1, and COP1. Genes Genom. Genet. 3, 493-503.

Gingerich, D. J., Gagne, J. M., Salter, D. W., Hellmann, H., Estelle, M., Ma, L. and Vierstra, R. D. 2005. Cullins 3a and 3b assemble with members of the broad complex/tram-track/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J. Biol. Chem. 280, 18810-18821. crossref(new window)

Gruber, H., Heijde, M., Heller, W., Albert, A., Seidlitz, H. K. and Ulm, R. 2010. Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc. Natl. Acad. Sci. USA 107, 20132-20137. crossref(new window)

Guitton, A. E., Page, D. R., Chambrier, P., Lionnet, C., Faure, J. E., Grossniklaus, U. and Berger, F. 2004. Identification of new members of Fertilisation Independent Seed Polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131, 2971-2981. crossref(new window)

Gusmaroli, G., Feng, S. and Deng, X. W. 2004. The Arabidopsis CSN5A and CSN5B subunits are present in distinct COP9 signalosome complexes, and mutations in their JAMM domains exhibit differential dominant negative effects on development. Plant Cell 16, 2984-3001. crossref(new window)

Haglund, K., Di Fiore, P. P. and Dikic, I. 2003. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598-603. crossref(new window)

He, Y. J., McCall, C. M., Hu, J., Zeng, Y. and Xiong, Y. 2006. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev. 20, 2949-2954. crossref(new window)

Heijde, M. and Ulm, R. 2013. Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc. Natl. Acad. Sci. USA 110, 1113-1118. crossref(new window)

Higa, L. A., Wu, M., Ye, T., Kobayashi, R., Sun, H. and Zhang, H. 2006. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol. 8, 1277-1283. crossref(new window)

Hotton, S. K. and Callis, J. 2008. Regulation of cullin Ring ligases. Annu. Rev. Plant Biol. 59, 467-489. crossref(new window)

Huang, T. T. and D'Andrea, A. D. 2006. Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell Biol. 7, 323-334. crossref(new window)

Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., Hofmann, K., Walters, K. J., Finley, D. and Dikic, I. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481-488. crossref(new window)

Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., Strickland, E., Paz-Ares, J., Wei, N., De Jaeger, G., Rodriguez, P. L., Deng, X. W. and Rubio, V. 2014. Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 26, 712-728. crossref(new window)

Jenkins, G. I. 2014. The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26, 21-37. crossref(new window)

Jiang, J. and Clouse, S. D. 2001. Expression of a plant gene with sequence similarity to animal TGF-b receptor interacting protein is regulated by brassinosteroids and required for normal plant development. Plant J. 26, 35-45. crossref(new window)

Jiang, S., Kumar, S., Eu, Y. J., Jami, S. K., Stasolla, C. and Hill, R. D. 2012. The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype. J. Exp. Bot. 63, 2693-2703. crossref(new window)

Jin, J., Arias, E. E., Chen, J., Harper, J. W. and Walter, J. C. 2006. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709-721. crossref(new window)

Kim, I., Mi, K. and Rao, H. 2004. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15, 3357-3365. crossref(new window)

Kim, S. H., Kim, H., Seo, K. I., Kim, S. H., Chung, S., Huang, X., Yang, P., Deng, X. W. and Lee, J. H. 2014. DWD hypersensitive to UV-B 1 is negatively involved in UV-B mediated cellular responses in Arabidopsis. Plant Mol. Biol. 86, 571-583. crossref(new window)

Kim, S. H., Lee, J. H., Seo, K. I., Ryu, B., Sung, Y., Chung, T., Deng, X. W. and Lee, J. H. 2014. Characterization of a Novel DWD protein that participates in heat stress response in Arabidopsis. Mol. Cells 7, 833-840.

Köhler, C., Hennig, L., Bouveret, R., Gheyselinck, J., Grossniklaus, U. and Gruissem, W. 2003. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J. 22, 4804-4814. crossref(new window)

Lau, O. S., Huang, X., Charron, J. B., Lee, J. H., Li, G. and Deng, X. W. 2011. Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. Mol. Cell 43, 703-712. crossref(new window)

Lee, J. and Zhou, P. 2007. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775-780. crossref(new window)

Lee, J. H. and Kim, W. T. 2011. Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol. Cells 31, 201-208. crossref(new window)

Lee, J. H., Terzaghi, W. and Deng, X. W. 2011. DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Sci. 180, 352-357. crossref(new window)

Lee, J. H., Terzaghi, W., Gusmaroli, G., Charron, J. B., Yoon, H. J., Chen, H., He, Y. J., Xiong, Y. and Deng, X. W. 2008. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-ring E3 ubiquitin ligases. Plant Cell 20, 152-167. crossref(new window)

Lee, J. H., Yoon, H. J., Terzaghi, W., Martinez, C., Dai, M., Li, J., Byun, M. O. and Deng, X. W. 2010. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22, 1716-1732. crossref(new window)

Li, T., Chen, X., Garbutt, K. C., Zhou, P. and Zheng, N. 2006. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124, 105-117. crossref(new window)

Li, T., Robert, E. I., van Breugel, P. C., Strubin, M. and Zheng, N. 2010. A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat. Struct. Mol. Biol. 17, 105-111. crossref(new window)

Liu, H. and Stone, S. L. 2010. Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22, 2630-2641. crossref(new window)

Liu, H. and Stone, S. L. 2013. Cytoplasmic degradation of the Arabidopsis transcription factor abscisic acid insensitive 5 is mediated by the ring-type E3 ligase Keep on going. J. Biol. Chem. 288, 20267-20279. crossref(new window)

Marrocco, K., Thomann, A., Parmentier, Y., Genschik, P. and Criqui, M. C. 2009. The APC/C E3 ligase remains active in most post-mitotic Arabidopsis cells and is required for proper vasculature development and organization. Development 136, 1475-1485. crossref(new window)

Moser, J., Volker, M., Kool, H., Alekseev, S., Vrieling, H., Yasui, A., van Zeeland, A. A. and Mullenders, L. H. 2005. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair 4, 571-582. crossref(new window)

Mukhopadhyay, D. and Riezman, H. 2007. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201-205. crossref(new window)

Németh, K., Salchert, K., Putnoky, P., Bhalerao, R., Koncz-Kálmán, Z., Stankovic-Stangeland, B., Bakó, L., Mathur, J., Okrész, L., Stabel, S., Geigenberger, P., Stitt, M., Rédei, G. P., Schell, J. and Koncz, C. 1998. Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev. 12, 3059-3073. crossref(new window)

Olzman, J. A. and Chin, L. S. 2008. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4, 85-87. crossref(new window)

Osterlund, M. T., Hardtke, C. S., Wei, N. and Deng, X. W. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466. crossref(new window)

Pepper, A., Delaney, T., Washburn, T., Poole, D. and Chory, J. 1994. DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein. Cell 78, 109-116. crossref(new window)

Petroski, M. D. and Deshaies, R. J. 2005. Function and regulation of cullin-ring ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9-20.

Pickart, C. M. 2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533. crossref(new window)

Piper, R. C. and Lehner, P. 2011. Endosomal transportation via ubiquitination. Trends Cell Biol. 21, 647-655. crossref(new window)

Saijo, Y., Sullivan, J. A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U. and Deng, X. W. 2003. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 17, 2642-2647. crossref(new window)

Salmena, L. and Pandolfi, P. P. 2007. Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nat. Rev. Cancer 7, 409-413. crossref(new window)

Sarikas, A., Hartmann, T. and Pan, Z. Q. 2011. The cullin protein family. Genome Biol. 12, 220. crossref(new window)

Seo, H. S., Yang, J. Y., Ishikawa, M., Bolle, C., Ballesteros, M. L. and Chua, N. H. 2003. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995-999. crossref(new window)

Seo, K. I., Lee, J. H., Nezames, C. D., Zhong, S., Song, E., Byun, M. O. and Deng, X. W. 2014. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26, 695-711. crossref(new window)

Shi, H., Wang, X., Mo, X., Tang, C., Zhong, S. and Deng, X. W. 2015. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc. Natl. Acad. Sci. USA 112, 3817-3822.

Simpson, G. G., Dijkwel, P. P., Quesada, V., Henderson, I. and Dean, C. 2003. FY is an RNA 39 end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777-787. crossref(new window)

Smalle, J. and Vierstra, R.D. 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55, 555-590. crossref(new window)

Spratt, D. E., Walden, H. and Shaw, G. S. 2014. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem. J. 458, 421-437. crossref(new window)

Steinbach, Y. and Hennig, L. 2014. Arabidopsis MSI1 functions in photoperiodic flowering time control. Front. Plant Sci. 5, 77.

Stone, S. L., Hauksdóttir, H., Troy, A., Herschleb, J., Kraft, E. and Callis, J. 2005. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137, 13-30. crossref(new window)

Stone, S. L., Williams, L. A., Farmer, L. M., Vierstra, R. D. and Callis, J. 2006. Keep on going, a ring E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415-3428. crossref(new window)

Suzuki, G., Yanagawa, Y., Kwok, S. F., Matsui, M. and Deng, X. W. 2002. Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes Dev. 16, 554-559. crossref(new window)

Vierstra, R. D. 2009. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 110, 385-397.

Wei, N., Kwok, S. F., von Arnim, A. G., Lee, A., McNellis, T. W., Piekos, B. and Deng, X. W. 1994. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell 6, 629-643. crossref(new window)

Wiborg, J., O’Shea, C. and Skriver, K. 2008. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitinprotein ligases. Biochem. J. 413, 447-457. crossref(new window)

Xu, G., Ma, H., Nei, M. and Kong, H. 2009. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc. Natl. Acad. Sci. USA 106, 835-840. crossref(new window)

Yanagawa, Y., Sullivan, J. A., Komatsu, S., Gusmaroli, G., Suzuki, G., Yin, J., Ishibashi, T., Saijo, Y., Rubio, V., Kimura, S. and Wang, J. and Deng, X. W. 2004. Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes Dev. 18, 2172-2181. crossref(new window)

Yee, D. and Goring, D. R. 2009. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J. Exp. Bot. 60, 1109-1121. crossref(new window)

Young, P., Deveraux, Q., Beal, R. E., Pickart, C. M. and Rechsteiner, M. 1998. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273, 5461-5467. crossref(new window)

Zhang, C., Guo, H., Zhang, J., Guo, G., Schumaker, K. S. and Guo, Y. 2010. Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation. Plant Cell 22, 2353-2369. crossref(new window)

Zhang, H., Ransom, C., Ludwig, P. and van Nocker, S. 2003. Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch flowering locus C. Genetics 164, 347-358.

Zhang, W., Ito, H., Quint, M., Huang, H., Noël, L. D. and Gray, W. M. 2008. Genetic analysis of CAND1-CUL1 interactions in Arabidopsis supports a role for CAND1-mediated cycling of the SCFTIR1 complex. Proc. Natl. Acad. Sci. USA 105, 8470-8475. crossref(new window)

Zhang, Y., Feng, S., Chen, F., Chen, H., Wang, J., McCall, C., Xiong, Y. and Deng, X. W. 2008. Arabidopsis DDB1-CUL4 Associated factor1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20, 1437-1455. crossref(new window)

Zhu, D., Maier, A., Lee, J. H., Laubinger, S., Saijo, Y., Wang, H., Qu, L. J., Hoecker, U. and Deng, X. W. 2008. Biochemical characterization of Arabidopsis complexes containing constitutively photomorphogenic1 and suppressor of phya proteins in light control of plant development. Plant Cell 20, 2307-2323. crossref(new window)

Zhu, L., Bu, Q., Xu, X., Paik, I., Huang, X., Hoecker, U., Deng, X. W. and Huq, E. 2015. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nat. Commun. 6, 7245. crossref(new window)