Advanced SearchSearch Tips
Effects of 17-DMAG Administration on Autophagy Flux in Mouse Skeletal Muscle
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 4,  2016, pp.387-397
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.4.387
 Title & Authors
Effects of 17-DMAG Administration on Autophagy Flux in Mouse Skeletal Muscle
Ju, Jeong-sun; Lee, Yoo-Hyun;
  PDF(new window)
The purpose of this study was to determine if heat shock proteins are involved in autophagy in skeletal muscle. We used the autophagy flux strategy, which is an LC3 II/p62 turnover assay conducted with and without an autophagy inhibitor, to determine whether 17-DMAG (an Hsp90 inhibitor/Hsp72 activator) stimulates autophagy in skeletal muscle. We treated C2C12 cells with 17-DMAG (500 nM) for 24 hr with and without the autophagy inhibitor (Bafilomycin A1, 200 ng/ml), and we injected C57BL/6 mice i.p. with 17-DMAG (10 mg/kg) daily for 7 days with and without colchicine as an autophagy inhibitor (0.4 mg/kg/day, administered on the last 2 days). C2C12 myotubes and tibialis anterior muscles were harvested for analysis of mTOR-dependent autophagy signaling pathway proteins and autophagic marker proteins (p62 and LC3 II) by Western blot analysis. The blots showed that 17-DMAG upregulated hsp72 and decreased Akt protein levels and S6 phosphorylation in C2C12 cells. However, an in vitro autophagic flux assay demonstrated that 17-DMAG did not increase LC3 II and p62 protein concentrations to a greater extent than Bafilomycin A1 treatment alone. Similarly, 17-DMAG increased Hsp72 protein levels and decreased the expression of Akt and the phosphorylation of S6 in mouse skeletal muscle. However, unlike the response seen in C2C12 myotubes, the p62 protein levels were significantly decreased in 17-DMAG-treated mouse skeletal muscle (~50%; p<0.05). The LC3 II protein levels in 17-DMAG-treated mice were increased ~2-fold more when degradation was inhibited by colchicine (p<0.01). This suggests that 17-DMAG stimulates basal autophagy in skeletal muscle but is not found in C2C12 myotubes.
17-DMAG;autophagy;heat shock protein;Hsp72;skeletal muscle;
 Cited by
Bagatell, R., Paine-Murrieta, G.. D., Taylor, C. W., Pulcini, E. J., Akinaga, S., Benjamin, I. J. and Whitesell, L. 2000. Induction of heat shock factor1-dependnent stress response alters the cytotoxic activity of HSP90-binding agents. Clin. Cancer Res. 6, 3312-3320.

Carra, S., Cripppa, V., Rusmini, P., Boncoraglio, A., Minoia, M., Giorgetti, E., Kampinga, H. H. and Poletti, A. 2012. Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog. Neurobiol. 97, 83-100. crossref(new window)

Carra, S., Brunsting, J. F., Lambert, H., Laudry, J. and Kampinga, H. H. 2009. HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2alpha phosphorylation. J. Biol. Chem. 284, 5523-5532. crossref(new window)

Ching, J. K., Ju, J. S., Pittman, S. K., Margeta, M. and Weihl, C. C. 2013. Increased colchicine-induced muscle toxicity. Autophagy 12, 2115-2125.

Criollo, A., Senovilla, L., Authier, H., Maiuri, M. C., Morselli, E., Vitale, I., Kepp, O., Tasdemir, E., Galluzzi, L., Shen, S., Tailer, M., Delahaye, N., Tesniere, A., De Stefano, D., Younes, A. B., Harper, F., Pierron, G., Lavandero, S., Zitvogel, L., Israel, A., Baud, V. and Kroemer, G. 2010. The IKK complex contributes to the induction of autophagy. EMBO J. 29, 619-631. crossref(new window)

Cuervo, A. M. and Wong, E. 2014. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92-104. crossref(new window)

Dokladny, K., Zuhl, M. N., Mandell, M., Bharttacharya, D., Schneider, S., Derectic, V. and Moseley, P. L. 2013. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy. J. Biol. Chem. 288, 14959-14972. crossref(new window)

Ferat-Osorio, E., Sanchez-Anaya, A., Gutierrez-Mendoza, M., Bosco-Garate, I., Wong-Baeza, I., Pastelin-Palacios, R., Pedraza-Alva, G., Bonifaz, L. C., Cortes-Reynosa, P., PerezSalazar, E., Arriaga-Pizano, L., Lopez-Macias, C., Rosenstein, Y. and Isibasi, A. 2014. Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism. J. Inflamm. 11, 1476-1492.

Goldberg, A. L. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895-899. crossref(new window)

Gusarova, V., Caplan, A. J., Brodsky, J. L. and Fisher, E. A. 2001. Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70. J. Biol. Chem. 276, 24891-24900. crossref(new window)

Hartl, F. U. and Hayer-Hartl, M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858. crossref(new window)

Ju, J. S., Fuentealba, R. A., Miller, S. E., Jackson, E., Piwnica-Worms, D., Baloh, R. H. and Weihl, C. C. 2009. Valosin-containing protein(VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875-888. crossref(new window)

Ju, J. S., Varadhachary, A. S., Miller, S. E. and Weihl, C. C. 2010. Quantitation of “autophagic flux” in mature skeletal muscle. Autophagy 6, 929-935. crossref(new window)

Kim, D. S, Li, B., Rhew, K. Y, Oh, H. W, Lim, H. D, Lee, W., Chae, H. J. and Kim, H. R. 2012. The regulatory mechanism of 4-phenylbutyric acid against ER stress-induced autophagy in human gingival fibroblasts. Arch. Pharm. Res. 35, 1269-1278. crossref(new window)

Lu, A., Ran, R., Parmentier-Batteur, S., Nee, A. and Sharp, F. R. 2002. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J. Neurochem. 81, 355-364.

Meacham, G. C., Lu, Z., King, S., Sorscher, E., Tousson, A. and Cyr, D. M. 1999. The Hdj-2/Hsc70 chaperone pair facilitates early steps in CFTR biogenesis. EMBO J. 18, 1492-1505. crossref(new window)

Meley, D., Bauvy, C., Houben-Weerts, J. H. Dubbelhuis, P. F., Helmond, M. T., Codogno, P. and Meijer, A. J. 2006. AMP-activated protein kinase and the regulation of autophagic proteolysis. J. Biol. Chem. 281, 34870-34879. crossref(new window)

Mizushima, N., Yoshimori, T. and Ohsumi, Y. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132. crossref(new window)

Ogier-Denis, E., Pattingre, S., El Benna, J. and Codogno, P. 2000. Erk1/2-dependent phosphorylation of Gα-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J. Biol. Chem. 275, 39090-39095. crossref(new window)

Palacios, C., Lopez-Peres, A. I. and Lopez-Rivas, A. 2010. Down-regulation of RIP expression by 17-dimethylaminoethylamino-17-demethoxygeldanamycin promotes TRAIL-induced in breast tumor cells. Cancer Lett. 287, 207-215. crossref(new window)

Palacios, C., Martin-Perez, R., Lopez-Perez, A. I., Pandiella, A. and Lopez-Rivas, A. 2010. Autophagy inhibition sensitizes multiple myeolma cells to 17-dimethylaminoethylamino-17-demethoxygeldanamycin-induced apoptosis. Leuk. Res. 34, 1533-1538. crossref(new window)

Pattingre, S., Bauvy, C. and Codogno, P. 2003. Amono acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J. Biol. Chem. 278, 16667-16674. crossref(new window)

Qin, L., Wang, Z., Tao, L. and Wang, Y. 2010. ER stress negatively regulates Akt/TSC/mTOR pathway to enhance autophagy. Autophagy 6, 239-247. crossref(new window)

Ren, Y., Huang, F., Liu, Y., Yang, Y., Jiang, Q. and Xu, C. 2009. Autophagy inhibition through PI3K/Akt increases apoptosis by sodium selenite in NB4 cells. BMB Rep. 42, 599-604. crossref(new window)

Riedel, M., Goldbau, O., Schwartz, L., Schmitt, S. and Richter-Landsberg, C. 2010. 17-AAG induces cytoplasmic α-synuclein aggregate clearnce by induction of autophagy. Plos One 5, e8753. crossref(new window)

Rubinsztein, D. C., Codogno, P. and Levine, B. 2012. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709-730. crossref(new window)

Rubinsztein, D. C., Cuervo, A. M., Rauikuma, B., Sarkar, S., Korolchuk, V., Kaushik, S. and Klionsky, D. J. 2009. In search of an “autophagomometer”. Autophagy 5, 585-589. crossref(new window)

Ryter, S. W. and Choi, A. M. 2013. Autophagy: An integral component of the mammalian stress response. J. Biochem. Pharmacol. Res. 1, 176-188.

Sato, S., Fujita, N. and Tsurun, T. 2000. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA 97, 10832-10837. crossref(new window)

Senf, S. M. 2013. Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol. 4, 330.

Senf, S. M., Dodd, S. L., McClung, J. M. and Judge, A. R. 2008. Hsp70 overexpression inhibits NFkB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J. 22, 3836-3845. crossref(new window)

Soti, C., Nagy, E., Giricz, A., Vigh, L., Csermely, P. and Ferdinandy, P. 2005. Heat shock protein s as emerging therapeutic targets. Br. J. Pharmacol. 146, 769-780. crossref(new window)

Vos, M. J., Zijlstra, M. P., Kanon, B., Van Waarde-Verhagen, M. A., Brunt, E. R., Oosterveld-Hut, H. M., Carra, S., Sibon, O. C. and Kampinga, H. H. 2010. HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum. Mol. Genet. 19, 4677-4693. crossref(new window)

Wang, A. M., Morishima, Y., Clapp, K. M., Peng, H. M., Pratt, W. B., Gestwicki, J. E., Osawa, Y. and Lieberman, A. P. 2010. Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J. Biol Chem. 285, 15714-15723. crossref(new window)

Yang, J., Carra, S., Zhu, W. G. and Kampinga, H. H. 2013. The regulation of the autophagic network and its implications for human disease, Int. J. Biol. Sci. 9, 1121-1133. crossref(new window)

Yang, Y., Janich, S., Cohn, J. A. and Wilson, J. M. 1993. The common variant of cyctic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. USA 90, 9480-9484. crossref(new window)

Zhao, J , Brault J. J., Schild A., Cao, P., Sandri, M., Schiaffino, S, Lecker, S. H. and Goldberg, A. L. 2007. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472-483. crossref(new window)