Advanced SearchSearch Tips
Association between Genotypes of the Isocitrate Dehydrogenase 3, beta subunit (IDH3B) Gene and Carcass Traits in an F2 Crossbred Population of Landrace × Jeju (Korea) Black Pigs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 4,  2016, pp.414-418
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.4.414
 Title & Authors
Association between Genotypes of the Isocitrate Dehydrogenase 3, beta subunit (IDH3B) Gene and Carcass Traits in an F2 Crossbred Population of Landrace × Jeju (Korea) Black Pigs
Kang, Yong-Jun; Jeong, Dong Kee; Cho, In-Cheol; Han, Sang-Hyun;
  PDF(new window)
This study tested the association between genetic polymorphisms of the isocitrate dehydrogenase 3, beta subunit (IDH3B) gene and economic traits in an F2 crossbred population of Landrace × Jeju (South Korea) Black pigs. A 304-bp insertion/deletion mutation in promoter region was screened for determining genotypes of the IDH3B gene in a total of 1,105 F2 pigs. Three genotypes (AA, AB, and BB) were identified in the founder, F1, and F2 populations. Association analysis showed significant differences in carcass weights (CW), backfat thicknesses in three positions of the body (4th-5th ribs, BF5; 11th-12th ribs, BF12; 13th rib-1st lumbar, BFL), and carcass lengths (CL) (p<0.05), but not in meat color (MC), eye muscle area (EMA), or marbling scores (MARB) (p>0.05). The F2 IDH3B BB homozygotes showed heavier CW (80.790±0.725 kg) and shorter CL (101.875±0.336 cm) than the other genotypes (p<0.05). In addition, the BF levels between the 4th - 5th and 11th - 12th vertebrae were thicker in the carcasses of pigs with the IDH3B BB genotype than with the other genotypes (p<0.05). These results suggested that genetic variations in the IDH3B gene may serve as molecular genetic markers for improving the Landrace × Jeju Black pig crossbreeding systems.
Association;carcass trait;genotype;IDH3B;Jeju Black pig;
 Cited by
Cho, I. C., Kim, S. G., Kim, Y. K., Kang, Y. J., Yang, S. N., Park, Y. S., Cho, W. M., Cho, S. R., Kim, N. Y., Chae, H. S., Seong, P. N., Park, B. Y., Lee, J. H., Lee, J. B., Yoo, C. K., Han, S. H. and Ko, M. S. 2011. Association between Numerical Variations of Vertebrae and Carcass Traits in Jeju Native Black Pigs, Landrace Pigs, and Crossbred F2 Population. J. Life Sci. 23, 854-862.

Cho, I. C., Park, H. B., Yoo, C. K., Lee, G. J., Lim, H. T., Lee, J. B., Jung, E. J., Ko, M. S., Lee, J. H. and Jeon, J. T. 2011. QTL analysis of white blood cell, platelet and red blood cell-related traits in an F2 intercross between Landrace and Korean native pigs. Anim. Genet. 42, 621-626. crossref(new window)

Cho, I. C., Yoo, C. K., Lee, J. B., Jung, E. J., Han, S. H., Lee, S. S., Ko, M. S., Lim, H. T. and Park, H. B. 2015. Genome-wide QTL analysis of meat quality-related traits in a large F2 intercross between Landrace and Korean native pigs. Genet. Sel. Evol. 47, 7. crossref(new window)

Cohen, P. F. and Colman, R. F. 1972. Diphosphopyridine nucleotide dependent isocitrate dehydrogenase from pig heart. Charactgerization of the active substrate and modes of regulation. Biochemistry 11, 1501-1508. crossref(new window)

Hathaway, J. A. and Atkinson D. E. 1963. The effect of adenylic acid on yeast nicotinamide adenine dinucleotide isocitrate dehydrogenase, a possible metabolic control mechanism. J. Biol. Chem. 238, 2875-2881.

Hartong, D. T., Dange, M., McGee, T. L., Berson, E. L., Dryja, T. P. and Colman, R. F. 2008. Insights from retinitis pigmentosa into the roles of isocitrate dehydrogenases in the Krebs cycle. Nature Genet. 40, 1230-1234. crossref(new window)

Huh, T. L., Kim, Y. O., Oh, I. U., Song, B. J. and Inazawa, J. 1996. Assignment of the human mitochondrial NAD+-specific isocitrate dehydrogenase alpha subunit (IDH3A) gene to 15q25.1 → q25.2by in situ hybridization. Genomics 32, 295-296. crossref(new window)

Kalinowski, S. T., Taper, M. L. and Marshall, T. C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099-1106. crossref(new window)

MacDonald, M. J., Brown, L. J., Longacre, M. J., Stoker, S. W. and Kendrick, M. A. 2013. Knockdown of both mitochondrial isocitrate dehydrogenase enzymes in pancreatic beta cells inhibits insulin secretion. Biochim. Biophys. Acta 1830, 5104-5111. crossref(new window)

Park, J. C., Kim, Y. H., Jung, H. J., Park, B. Y., Lee, J. I. and Moon, H. K. 2005. Comparison of meat quality and physicochemical characteristics of pork between Korean native black pigs (KNBP) and Landrace by market weight. J. Anim. Sci. Technol. 47, 91-98. crossref(new window)

Ren, Z., Liu, W., Zheng, R., Zuo, B., Xu, D., Lei, M., Li, F., Li, J., Ni, D. and Xiong, Y. 2012. A 304 bp insertion/deletion mutation in promoter region induces the increase of porcine IDH3β gene expression. Mol. Biol. Rep. 39, 1419-1426. crossref(new window)

SAS program package. 1999. SAS/STAT software for PC. Release 8.0.1. SAS Institute Inc, Cary, NC, USA.

Sambrook, J., Fritsch, E. F. and Manniatis, T. 1989. Isolation of high-molecular-weight DNA from mammalian cells. In: Molecular cloning: a laboratory manual, 2nd ed., New York:Cold Spring Harbor Laboratory Press. pp. 9.14-9.23.

Zeng, A. P. and Deckwer, W. D. 1994. Pathway analysis of oxygen utilization and tricarboxylic acid cycle activity in Saccharomyces cerevisiae growing on glucose. J. Biotechnol. 37, 67-77. crossref(new window)