Advanced SearchSearch Tips
Expression Profiling of MLO Family Genes under Podosphaera xanthii Infection and Exogenous Application of Phytohormones in Cucumis melo L.
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 4,  2016, pp.419-430
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.4.419
 Title & Authors
Expression Profiling of MLO Family Genes under Podosphaera xanthii Infection and Exogenous Application of Phytohormones in Cucumis melo L.
Howlader, Jewel; Kim, Hoy-Taek; Park, Jong-In; Ahmed, Nasar Uddin; Robin, Arif Hasan Khan; Jung, Hee-Jeong; Nou, III-Sup;
  PDF(new window)
Powdery mildew disease caused by Podosphaera xanthii is a major concern for Cucumis melo production worldwide. Knowledge on genetic behavior of the related genes and their modulating phytohormones often offer the most efficient approach to develop resistance against different diseases. Mildew Resistance Locus O (MLO) genes encode proteins with seven transmembrane domains that have significant function in plant resistance to powdery mildew fungus. We collected 14 MLO genes from ‘Melonomics’ database. Multiple sequence analysis of MLO proteins revealed the existence of both evolutionary conserved cysteine and proline residues. Moreover, natural genetic variation in conserved amino acids and their replacement by other amino acids are also observed. Real-time quantitative PCR expression analysis was conducted for the leaf samples of P. xanthii infected and phyto-hormones (methyl jasmonate and salicylic acid) treated plants in melon ‘SCNU1154’ line. Upon P. xanthii infection using 7 different races, the melon line showed variable disease reactions with respect to spread of infection symptoms and disease severity. Three out of 14 CmMLO genes were up-regulated and 7 were down-regulated in leaf samples in response to all races. The up- or down-regulation of the other 4 CmMLO genes was race-specific. The expression of 14 CmMLO genes under methyl jasmonate and salicylic acid application was also variable. Eleven CmMLO genes were up-regulated under salicylic acid treatment, and 7 were up-regulated under methyl jasmonate treatments in C. melo L. Taken together, these stress-responsive CmMLO genes might be useful resources for the development of powdery mildew disease resistant C. melo L.
Cucumis melo;Mildew Resistance Locus O;phytohormone treatment;Podosphaera xanthii;powdery mildew;
 Cited by
mlo-Based Resistance: An Apparently Universal “Weapon” to Defeat Powdery Mildew Disease, Molecular Plant-Microbe Interactions, 2017, 30, 3, 179  crossref(new windwow)
Aist, J. R. and Bushnell, W. R. 1991. Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance. In The Fungal Spore and Disease Initiation in Plants and Animals. Edited by Cole GT, Hoch HC. New YorK: plenum press 321-345.

Bai, Y., Pavan, S., Zheng, Z., Zappel, N., Reinstädler, A., Lotti, C. De Giovanni, C., Ricciardi, L., Lindhout, P., Visser, R. G. F., Theres, K. and Panstruga, R. 2008. Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of MLO function. Mol. Plant Microbe. Interact. 21, 30-39. crossref(new window)

Berg, J. A., Appiano, M., Martinez, M. S., Hermans, F. W. K., Vriezen, W. H., Visser, R. G. F., Bai, Y. and Schouten, H. J. 2015 A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucmber. BMC Plant Biol. 15, 243. crossref(new window)

Büschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Töpsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88, 695-705. crossref(new window)

Chen, Z., Hartmann, H. A., Wu, M. J., Friedman, E. J., Chen, J., Pulley, M., Schulze-Lefert, P., Panstruga, R. and Jones, A. M. 2006. Expression analysis of the AtMLO gene family encoding plant-specific seventransmembrane domain proteins. Plant Mol. Biol. 60, 583-597. crossref(new window)

Cheng, H., Kun, W., Liu, D., Su, Y. and He, Q. 2012. Molecular cloning and expression analysis of CmMlo1 in melon. Mol. Biol. Rep. 39, 1903-1907. crossref(new window)

Consonni, C., Humphry, M. E., Hartmann, H. A., Livaja, M., Durner, J., Westphal, L., Vogel, J., Lipka, V., Kemmerling, B., Schulze-Lefert, P., Somerville, S. C. and Panstruga, R. 2006. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat. Genet. 386, 716-720.

Deshmukh, R., Singh, V. K. and Singh, B. D. 2014. Comparative phylogenetic analysis of genome-wideMlogene family members from Glycine max and Arabidopsis thaliana. Mol. Genet. Genomics 289, 345-359. crossref(new window)

Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., Von Heijne, G., Panstruga, R., Von Heijne, G. and Schulze-Lefert, P. 1999. Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J. Biol. Chem. 274, 34993-35004. crossref(new window)

Devoto, A., Hartmann, H. A., Piffanelli, P., Elliott, C., Simmons, C., Taramino, G., Goh, C. S., Cohen, F. E., Emerson, B. C., Schulze-Lefert, P. and Panstruga, R. 2003. Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J. Mol. Evol. 56, 77-88. crossref(new window)

Elliott, C., Muller, J, Miklis, M., Bhat, R. A., Schulze-Lefert, P. and Panstruga, R. 2005. Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochem. J. 385, 243-254. crossref(new window)

Feechan, A., Jermakow, A. M., Torregrosa, L., Panstruga, R. and Dry, I. B. 2008. Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct. Plant Biol. 35, 1255-1266. crossref(new window)

Feechan, A., Jermakow, A. M. and Dry, I. B. 2009. Grapevine MLO candidates required for powdery mildew pathogenicity. Plant Signal Behav. 4, 522-523. crossref(new window)

Fita, A., Bowen, H. C., Hayden, R. M., Nuez, F., Pico, B. and Hammond, J. P. 2012. Diversity in Expression of Phosphorus (P) Responsive Genes in Cucumismelo L. PLoS One 7, e35387. crossref(new window)

Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G. and Gonzalez, V. M. 2012. The genome of melon (Cucumis melo L.). Proc. Natl. Acad. Sci. USA 109, 11872-11877. crossref(new window)

Glawe, D. A. 2008. The powdery mildews: a review of the world most familiar (yet poorly known) plant pathogens. Annu. Rev. Phytopathol. 46, 27-51. crossref(new window)

Glazebrook, J. 1999. Genes controlling expression of defense responses in Arabidopsis. Curr. Opin. Plant Biol. 2, 280-286. crossref(new window)

Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227. crossref(new window)

Hückelhoven, R., Fodor, J., Preis, C. and Kogel, K. H. 1999. Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol. 119, 1251-1260. crossref(new window)

Jarvis, W. R., Gubler, W. D. and Grove, G. G. 2002. Epidemiology of powdery mildews in agricultural pathosystems. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW, eds. The Powdery Mildews: A Comprehensive Treatise. St Paul MN, USA: APS Press 169-99.

Kim, M. C., Lee, S. H., Kim, J. K., Chun, H. J., Choi, M. S., Chung, W. S., Moon, B. C., Kang, C. H., Park, C. Y., Yoo, J. H., Kang, Y. H., Koo, S. C., Koo, Y. D., Jung, J. C., Kim, S. T., Schulze-Lefert, P., Lee, S. Y. and Cho, M. J. 2002a. MLO, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. J. Biol. Chem. 277, 19304-19314. crossref(new window)

Kim, M. C., Panstruga, R., Elliott, C., Müller, J., Devoto, A., Yoon, H. W., Park, H. C., Cho, M. J. and Schulze-Lefert, P. 2002b. Calmodulin interacts with MLO protein to regulate defense against mildew in barley. Nature 416, 447-450. crossref(new window)

Kim, D. S. and Hwang, B. K. 2012. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. Plant J. 72, 843-855. crossref(new window)

Kumar, J., Hückelhoven, R., Beckhove, U., Nagarajan, S. and Kogel, K. H. 2001. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolarissorokiniana(teleomorph: Cochliobolussativus) and its toxins. Phytopathology 91, 127-133. crossref(new window)

Lebeda, A. and Sedláková, B. 2006. Identification and survey of cucurbit powderymildew races in Czech populations. Proceedings of Cucurbitaceae, Asheville, North Carolina, USA, 17-21 September 2006. pp 444-452.

Liu, Q. and Zhu, H. 2008. Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 409, 1-10. crossref(new window)

Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 −∆∆ct method. Methods 25, 402-408. crossref(new window)

McDonald, B. A. and Linde, C. 2002. Pathogen population genetics, evolutionary potential and durable resistance. Annu. Rev. Phytopathol. 40, 349-379. crossref(new window)

Miazzi, M., Laguardia, C. and Faretra, F. 2011. Variation in Podosphaera xanthii on cucurbits in southern Italy. J. Phytopathol. 159, 538-545. crossref(new window)

Miklis, M., Consonni, C., Bhat, R. A., Lipka, V., Schulze-Lefert, P. and Panstruga, R. 2007. Barley MLO modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol. 144, 1132-1143. crossref(new window)

Nicholas, K. B. and Nicholas, H. B. J. 1997. GeneDoc: a tool for editing and annotating multiple sequence alignments.

Orz´aez, M., Salgado, J., Gimenez-Giner, A., Perez-Paya, E. and Mingarro, I. 2004. Influence of proline residues in transmembrane helix packing. J. Mol. Biol. 335, 631-640. crossref(new window)

Panstruga, R. 2003. Establishing compatibility between plants and obligate biotrophic pathogens. Curr. Opin. Plant Biol. 6, 320-326. crossref(new window)

Panstruga, R. 2005b. Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem. Soc. Transact. 33, 389-392. crossref(new window)

Perchepied, L., Bardin, M., Dogimont, C. and Pitrat, M. 2005. Relationship between loci conferring downy mildew and powdery mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95, 556-565. crossref(new window)

Pessina, S., Pavan, S., Catalano, D., Gallotta, A., Visser, R. G. F., Bai, Y., Malnoy, M. and Schouten, H. J. 2014. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica. BMC Genomics 15, 618. crossref(new window)

Piffanelli, P., Zhou, F. S., Casais, C., Orme, J., Jarosch, B., Schaffrath, U., Collins, N. C., Panstruga, R. and Schulze-Lefert, P. 2002. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 129, 1076-1085. crossref(new window)

Reddy, V. S., Ali, G. S. and Reddy, A. S. N. 2003. Characterization of a pathogen-induced calmodulin-binding protein: mapping of four Ca2+ dependent calmodulin-binding domains. Plant Mol. Biol. 52, 143-159. crossref(new window)

Reinbothe, C., Springer, A., Samol, I. and Reinbothe, S. 2009. Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. FEBS J. 276, 4666-4681. crossref(new window)

Reinstädler, A., Müller, J., Czembor, J. H., Piffanelli, P. and Panstruga, R. 2010. Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Plant Biol. 10, 31. crossref(new window)

Schulze-Lefert, P. and Vogel, J. 2000. Closing the ranks to attack by powdery mildew. Trends Plant Sci. 5, 343-348. crossref(new window)

Schouten, H. J., Krauskopf, J., Visser, R. G. F. and Bai, Y. 2014. Identification of candidate genes required for susceptibility to powdery or downy mildew in cucumber. Euphytica 200, 475-486. crossref(new window)

Thomma, B. P., Penninckx, I. A., Broekaert, W. F. and Cammue, B. P. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13, 63-68. crossref(new window)

Wang, X., Ma, Q., Dou, L., Liu, Z., Peng, R. and Yu, S. 2016. Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Plant Physiol. Biochem. 103, 106-119. crossref(new window)

Winterhagen, P., Howard, S. F., Qiu, W. and Kovács, L. G. 2008. Transcriptional up-regulation of grapevine MLO genes in response to powdery mildew infection. Am. J. Enol. Vit. 59, 2.

Wolter, M., Hollricher, K., Salamini, F. and Schulze-Lefert, P. 1993. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defense mimic phenotype. Mol. Gen. Genet. 239, 122-128.

Zheng, Z., Nonomura, T., Bóka, K., Matsuda, Y., Visser, R. G. F., Toyoda, H. and Bai, Y. 2013. Detection and quantification of Leveillula taurica growth in pepper leaves. Phytopathology 103, 6.