Advanced SearchSearch Tips
Biological Activities of Solid-fermentation Garlic with Lactic Acid Bacteria
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 4,  2016, pp.446-452
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.4.446
 Title & Authors
Biological Activities of Solid-fermentation Garlic with Lactic Acid Bacteria
Lee, Jung-Bok; Joo, Woo-Hong; Kwon, Gi-Seok;
  PDF(new window)
Garlic (Allium sativum L.) and its extracts have been used in a wide range of applications, including as folk medicines in many Asian countries. This traditional herb has several functional properties and strong biological activities, making it useful as a functional food material. This study investigated the biological activities of solid-garlic after fermentation by lactic acid bacteria. Several solid-garlic fermentation strains of lactic acid bacteria were isolated from Korean traditional fermented food or obtained from the Korean Collection for Type Cultures. Lactic acid bacteria showed selective growth in garlic extracts on MRS media. Fermentation of solid garlic (heated 121℃, 15 min or not heated) by lactic acid bacteria gave total polyphenol and flavonoid contents of 731.0-845.2 g/g and 92.68-413.58 g/g, respectively. The DPPH scavenging activities and SOD like activities were measured as 7,584% and 9499%, respectively. These activities were relatively higher than a positive control, vitamin C. Measurement of antidiabetic activity using α-glucosidase inhibition assay showed that solid garlic fermented with lactic acid bacteria gave a higher activity than the control, acarbose. Fermentation of solid garlic with lactic acid bacteria may therefore help to alleviate adverse biological activities, as well as provide functional food materials.
Antioxidant activity;fermentation;functional food;garlic;probiotics;
 Cited by
Ahotupa, M., Saxelin, M. and Korpela, R. 1996. Antioxidative properties of Lactobacillus GG. Nutr. Today 31, 51-52.

Amanatidou, A., Smid, E. J., Bennik, M. H. J. and Gorris, L. G. M. 2001. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentration. FEMS Microbiol. Lett. 203, 87-94. crossref(new window)

An, B. J., Bae, M. J., Choi, H. J., Zhang, Y. B., Sung, T. S. and Choi, C. 2002. Natural products, organic chemistry: Isolation of polyphenol compounds from the leaves of Korean persimmon (Diospyruskaki L. Folium). J. Kor. Soc. Agric. Chem. Biotechnol. 45, 212-217.

Bell, D. S. 2004. Type 2 diabetes mellitus: What in the optimal treatment regimen? Am. J. Med. 116, 23-29. crossref(new window)

Bertozzi, C. R. and Kiessling, L. L. 2001. Chemical glycobiology. Science 23, 2357-2364.

Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. crossref(new window)

Cavallito, C. J. and Bailey, J. H. 1944. Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties, and antimicrobial action. J. Am. Chem. Soc. 66, 1950-1951. crossref(new window)

Choe, M., Kim, D. J., Lee, H. J., You, J. K., Seo, D. J., Lee, J. H. and Chung, M. J. 2008. A study on the glucose regulating enzymes and antioxidant activities of water extracts from medicinal herbs. J. Kor. Soc. Food Sci. Nutr. 37, 542-547. crossref(new window)

Feldberg, R. S., Chang, S. C., Kotik, A. N., Nadler, M., Neuwirth, Z., Sundstrom, D. C. and Thompson, N. H. 1998. In vitro mechanism of inhibition of bacterial cell growth by allicin. Antimicrob. Agents Chemother. 32, 1763-1768.

Fridovich, I. 1989. Superoxide dismutase an adaption to paramagnetic gas. J. Biol. Chem. 264, 7761-7762.

Han, D. S. and Kim, S. J. 1994. SOD-like compounds and development of functional food. Bull. Food Technol. 7, 41-49.

Ide, N., Lau, B. H., Ryu, K., Matsuura, H. and Itakura, Y. 1999. Antioxidant effects of fructosyl arginine, a Maillard reaction product in aged garlic extract. J. Nutr. Biochem. 10, 372-376. crossref(new window)

Jeong, E. B., Choi, J. H., Kim, K. H., Lee, S. K., Hwang, Y. I. and Lee, S. H. 2013. Organosulfur compounds in fermented garlic extracts and the effects on alcohol induced cytotoxicity in CYP2E1-transfected HepG2 cells. J. Kor. Soc. Food Sci. Nutr. 42, 342-347. crossref(new window)

Ji, L. L. 1993. Antioxidant enzyme response to exercise and aging. Med. Sci. Sport Exer. 25, 225-231.

Jung, K. and Park, C. S. 2012. Physiological activities of fermented garlic broth during fermentation. Kor. J. Food Preserv. 19, 406-412. crossref(new window)

Kang, M. J., Lee, S. J., Sung, N. J. and Shin, J. H. 2013. The effect of extract powder from fresh and black garlic on main components in serum and organs of streptozotocin-induced diabetic rats. J. Life Sci. 23, 432-442. crossref(new window)

Kang, M. J. and Shin, J. H. 2012. The effect of black garlic extract on lipid metabolism in restraint stressed rats. J. Life Sci. 22, 1529-1537. crossref(new window)

Kim, J. S. and Cho, S. Y. 2008. Physicochemical properties and antioxidative activities of Omija (Schizandra chinensis Bailon). Kor. J. Food Nutr. 21, 35-42.

Kim, J. G., Kang, Y. M., Eum, G. S., Ko, Y. M. and Kim, T. Y. 2003. Antioxidative activity and antimicrobial activity of extracts from medicinal plants. J. Agrci. Life Sci. 37, 69-75.

Korpela, R., Peuhkuri, K., Läahteenmäaki, T., Sievi, E., Saxelin, M. and Vapaatalo, H. 1997. Lactobacillus rhamnosus GG shows antioxidative properties in vascular endothelial cell culture. Milchwissenschaft 52, 503-505.

Lee, D. H., Sohn, D. S., Cho, D. Y., Kim, B. J., Lim, Y. Y. and Kim, Y. H. 2010. Anti-inflammatory and anti-oxidant effects of Sophora flavescens root extraction in lipopolysaccharide-activated Raw 264.7 cells. Kor. J. Med. Mycol. 15, 39-50.

Lee, S. J., Shin, J. H., Kang, M. J., Jung, W. J., Ryu, J. H., Kim, R. J. and Sung, N. J. 2010. Antioxidants activity of aged red garlic. J. Life Sci. 20, 775-781. crossref(new window)

Liu, C. T., Hse, H., Lii, C. K., Chen, P. S. and Sheen, L. Y. 2005. Effects of garlic oil and diallyl trisulfide on glycemic control in diabetic rats. Eur. J. Pharmacol. 516, 165-173. crossref(new window)

Marklund, S. and Marklund, G. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469-474. crossref(new window)

Sanders, J. W., Leehouts, K. J., Haandrikman, A. J., Venema, G. and Kok, J. 1995. Stress response in Lactococcus lactis: Cloning, expression analysis and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177, 5254-5260.

Shahidi, F. and Wanasundara, P. D. 1992. Phenolic antioxidants. Crit. Rev. Food Sci. 32, 67-103. crossref(new window)

Shin, J. H., Choi, D. J., Chung, M. J., Kang, M. J. and Sung, N. J. 2008. Changes of physicochemical components and antioxidant activity of aged garlic at different temperatures. J. Kor. Soc. Food Sci. Nutr. 37, 1174-1181. crossref(new window)

Sheela, C. G., Kumud, K. and Augusti, K. T. 1995. Anti-diabetic effects of onion and garlic sulfoxide amino acids in rats. Planta. Med. 61, 356-357. crossref(new window)

Staba, E. J., Lash, L. and Staba. J. E. 2001. A commentary on the effects of garlic extraction and formulation on product composition. J. Nutr. 131, 1118-1119.

Stecchini, M. L., Del Torre, M. and Munari, M. 2001. Determination of peroxy radical scavenging of lactic acid bacteria. Int. J. Food Microbiol. 64, 183-188. crossref(new window)

Swain, T., Hillis, W. E. and Oritega, M. 1959. Phenolic constituents of Prunus domestica. 1. Quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10, 63-68. crossref(new window)

Tak, H. M., Kim, G. M., Kim, J. S., Hwang, C. R., Kang, M. J. and Shin, J. H. 2014. Quality characteristics and biological activity of fermented black garlic with probiotics. J. Life Sci. 24, 549-557. crossref(new window)

Ueda, Y., Tsubuku, T. and Miyajima, R. 1994. Composition of sulfur-containing components in onion and their flavor characters. Biosci. Biotechnol. Biochem. 58, 108-110. crossref(new window)

Zhishen, J., Mengcheng, T. and Jianming, W. 1999. The determination of flavonoid contents in mulberry and they scavenging effects on superoxide radicals. Food Chem. 64, 555-559. crossref(new window)