Advanced SearchSearch Tips
Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 4,  2016, pp.460-467
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.4.460
 Title & Authors
Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock
Hong, Ji Won; Jo, Seung-Woo; Kim, Oh Hong; Jeong, Mi Rang; Kim, Hyeon; Park, Kyung Mok; Lee, Kyoung In; Yoon, Ho-Sung;
  PDF(new window)
A filamentous cyanobacterium, Limnothrix sp. KNUA012, was axenically isolated from a freshwater bloom sample in Lake Hapcheon, Hapcheon-gun, Gyeongsangnam-do, Korea. Its morphological and molecular characteristics led to identification of the isolate as a member of the genus Limnothrix. Maximal growth was attained when the culture was incubated at 25℃. Analysis of its lipid composition revealed that strain KNUA012 could autotrophically synthesize alkanes, such as pentadecane (C15H32) and heptadecane (C17H36), which can be directly used as fuel without requiring a transesterification step. Two genes involved in alkane biosynthesis-an acyl-acyl carrier protein reductase and an aldehyde decarbonylase-were present in this cyanobacterium. Some common algal biodiesel constituents-myristoleic acid (C14:1), palmitic acid (C16:0), and palmitoleic acid (C16:1)-were produced by strain KNUA012 as its major fatty acids. A proximate analysis showed that the volatile matter content was 86.0% and an ultimate analysis indicated that the higher heating value was 19.8 MJ kg−1. The isolate also autotrophically produced 21.4 mg g−1 phycocyanin-a high-value antioxidant compound. Therefore, Limnothrix sp. KNUA012 appears to show promise for application in cost-effective production of microalga-based biofuels and biomass feedstock over crop plants.
Alkane-producing genes;biofuel;cyanobacteria;phycocyanin;potential feedstock;
 Cited by
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. crossref(new window)

Bi, Z. and He, B. B. 2013. Characterization of microalgae for the purpose of biofuel production. Biol. Eng. Trans. 56, 1529-1539.

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306. crossref(new window)

Coates, R. C., Podell, S., Korobeynikov, A., Lapidus, A., Pevzner, P., Sherman, D. H., Allen, E. E., Gerwick, L. and Gerwick, W. H. 2014. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9, e85140. crossref(new window)

Dassey, A. J., Hall, S. G. and Theegala, C. S. 2014. An analysis of energy consumption for algal biodiesel production: Comparing the literature with current estimates. Algal Res. 4, 89-95. crossref(new window)

Demirbas, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification method. Prog. Energy Combust. Sci. 31, 466-487. crossref(new window)

Dismukes, G. C., Carrieri, D., Bennette, N., Ananyev, G. M. and Posewitz, M. C. 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19, 235-240. crossref(new window)

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. crossref(new window)

Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191-198. crossref(new window)

Fu, W. J., Chi, Z., Ma, Z. C., Zhou, H. X., Liu, G. L., Lee, C. F. and Chi, Z. M. 2015. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. App. Microbiol. Biotechnol. 99, 7481-7494. crossref(new window)

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639. crossref(new window)

Huntley, M. E. and Redalje, D. G. 2007. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation Adapt. Strateg. Glob. Chang. 12, 573-608. crossref(new window)

Johnson, M. B. and Wen, Z. 2009. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energ. Fuel 23, 5179-5183. crossref(new window)

Knothe, G. 2010. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36, 364-373. crossref(new window)

Lardon, L., Helias, A., Sialve, B, Steyer, J. P. and Bernard, O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43, 6475-6481. crossref(new window)

Li, Y., Horsman, M., Wu, N., Lan, C. Q. and Dubois-Calero, N. 2008. Biofuels from microalgae. Biotechnol. Prog. 24, 815-820.

Meher, L. C., Vidya Sagar, D. and Naik, S. N. 2006. Technical aspects of biodiesel production by transesterification-a review. Renew. Sust. Energ. Rev. 10, 248-268. crossref(new window)

Nagaraj, S., Arulmurugan, P., Rajaram, M. G., Karuppasamy, K., Jayappriyan, K. R., Sundararaj, R., Vijayanand, N. and Rengasamy, R., 2012. Hepatoprotective and antioxidative effects of C-phycocyanin from Arthrospira maxima SAG 25780 in CCl 4-induced hepatic damage rats. Biomed. Prev. Nutr. 2, 81-85. crossref(new window)

Neilan, B. A., Jacobs, D. and Goodman, A. E. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61, 3875-3883.

Nübel, U., Garcia-Pichel, F. and Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327-3332.

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.

Ross, A. B., Jones, J. M., Kubacki, M. L. and Bridgeman, T. 2008. Classification of macroalgae as fuel and its thermo-chemical behaviour. Bioresour. Technol. 99, 6494-6504. crossref(new window)

Rudi, K., Skulberg, O. M. and Jakobsen, K. S. 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol. 180, 3453-3461.

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. and Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1, 20-43. crossref(new window)

Schirmer, A., Rude, M. A., Li, X., Popova, E. and del Cardayre, S. B. 2010. Microbial biosynthesis of alkanes. Science 329, 559-562. crossref(new window)

Shakeel, T., Fatma, Z., Fatma, T. and Yazdani, S. S. 2015. Heterogeneity of alkane chain length in freshwater and marine cyanobacteria. Front. Bioeng. Biotechnol. 3, 34.

Shih, C. M., Cheng, S. N., Wong, C. S., Kuo, Y. L. and Chou, T. C. 2009. Antiinflammatory and antihyperalgesic activity of C-phycocyanin. Anesth. Analg. 108, 1303-1310. crossref(new window)

Silveira, S. T., Burkert, J. F. M., Costa, J. A. V., Burkert, C. A. V. and Kalil, S. J. 2007. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresour. Technol. 98, 1629-1634. crossref(new window)

Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. crossref(new window)

Taton, A., Grubisic, S., Brambilla, E., De Wit, R. and Wilmotte, A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69, 5157-5169. crossref(new window)

Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R. and Leunissen, J. A. M. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, 71-74.

Valentine, D. L. and Reddy, C. M. 2015. Latent hydrocarbons from cyanobacteria. Proc. Natl. Acad. Sci. USA 112, 13434-13435. crossref(new window)

Wang, W., Liu, X. and Lu, X. 2013. Engineering cyanobacteria to improve photo-synthetic production of alka(e)nes. Biotechnol. Biofuels 6, 69. crossref(new window)

Yoshida, S., Takahashi, M., Ikeda, A., Fukuda, H., Kitazaki, C. and Asayama, M. 2015. Overproduction and easy recovery of biofuels from engineered cyanobacteria, autolyzing multicellular cells. J. Biochem. 157, 519-527. crossref(new window)