Advanced SearchSearch Tips
Brefeldin A-induced Endoplasmic Reticulum Stress Leads to Different CHOP Expression in Primary Astrocyte Cells and C6 Glioma Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 4,  2016, pp.490-495
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.4.490
 Title & Authors
Brefeldin A-induced Endoplasmic Reticulum Stress Leads to Different CHOP Expression in Primary Astrocyte Cells and C6 Glioma Cells
Park, Eun Jung; Kwon, Taeg Kyu;
  PDF(new window)
Brefeldin A (BFA), a lactone antibiotic isolated from the fungus Eupenicillium brefeldianum, inhibits the transport of secreted and membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. BFA disrupts Golgi function, the accumulation of unfolded proteins in ER, and the induction of ER stress. Prolonged ER stress induces apoptosis at least in part through the transcription factor C/EBP (CCAAT/enhancer binding protein) homologous protein (CHOP),which is activated by the unfolded protein response (UPR). In this paper, we demonstrate that BFA-induced endoplasmic reticulum stress leads to different CHOP expression in primary astrocyte cells and C6 glioma cells. BFA induced lower CHOP expression levels in primary astrocyte cells than in C6 glioma cells; however, other ER stress inducers (thapsigargin and tunicamycin) resulted in similar expression patterns in these two cell types. Interestingly, the three different ER stress inducers (BFA, thapsigargin, and tunicamycin) induced similar levels of CHOP mRNA expression in primary astrocyte cells. The ubiquitin-proteasome inhibitor MG132 also markedly up-regulated the BFA-mediated CHOP protein expression in primary astrocyte cells. BFA also induced higher proteasome activity in primary astrocyte cells than in C6 glioma cells. Taken together, our results suggest that higher proteasomal activity might down-regulate BFA-induced CHOP expression in primary astrocyte cells.
Astocyte cells;Brefeldin A;C6 glioma cells;CHOP;proteasome;
 Cited by
Boya, P., Cohen, I., Zamzami, N., Vieira, H. L. and Kroemer, G. 2002. Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ. 9, 465-467. crossref(new window)

Bruhat, A., Jousse, C., Wang, X. Z., Ron, D., Ferrara, M. and Fafournoux, P. 1997. Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J. Biol. Chem. 272, 17588-17593. crossref(new window)

Carew, J. S., Nawrocki, S. T., Krupnik, Y. V., Dunner, K., McConkey, D. J. and Keating, M. J. 2006. Targeting endoplasmic reticulum protein transport: a novel strategy to kill malignant B cells and overcome fludarabine resistance in CLL. Blood 107, 222-231. crossref(new window)

Donaldson, G., Cassel, D., Kahn, R. A. and Klausner, R. D. 1992. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc. Natl. Acad. Sci. USA 89, 6408-6412. crossref(new window)

Giulian, D. and Baker, T. J. 1986. Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163-2178. crossref(new window)

Guo, H., Tittle, T. V., Allen, H. and Marziarz, R. T. 1998. Brefeldin A-mediated apoptosis requires the activation of caspases and is inhibited by Bcl-2. Exp. Cell Res. 245, 57-68. crossref(new window)

Jeong, K., Kim, H., Kim, K., Kim, S. J., Hahn, B. S., Jahng, G. H., Yoon, K. S., Kim, S. S., Ha, J., Kang, I. and Choe, W. 2014. Cyclophilin B is involved in p300-mediated degradation of CHOP in tumor cell adaptation to hypoxia. Cell Death Differ. 21, 438-450. crossref(new window)

Kapoor, A. and Sanyal, A. J. 2009. Endoplasmic reticulum stress and the unfolded protein response. Clin. Liver Dis. 13, 581-590. crossref(new window)

Kaufman, R. J. 1999. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13,1211-1233. crossref(new window)

Kaufman, R. J., Scheuner, D., Schroder, M., Shen, X., Lee, K., Liu, C. Y. and Arnold, S. M. 2002. The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell. Biol. 3,411-421. crossref(new window)

Klausner, R. D., Donaldson, J. G. and Lippincott-Schwartz, J. 1992. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell. Biol. 116, 1071-1080 crossref(new window)

Lai, E., Teodoro, T. and Volchuk, A. 2007. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 22, 193-201. crossref(new window)

McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. and Holbrook, N. J. 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249-1259. crossref(new window)

Mori, K. 2000. Tripartitie management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451-454. crossref(new window)

Oyadomari, S., Araki, E. and Mori, M. 2002. Endoplasmic reticulum stress mediated apoptosis in pancreatic β-cell. Apoptosis 7, 335-345. crossref(new window)

Oyadomari, S. and Mori, M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11, 381-389. crossref(new window)

Oydomari, S., Takeda, K., Takiguchi, M., Gotoh, T., Matsumoto, M., Wada, I., Akira, S., Araki, E. and Mori, M. 2001. Nitric oxide-induced apoptosis in pancreatic β cells is mediated by the endoplasmic reticulum stress pathway. Proc. Natl. Acad. Sci. USA 98,10845-10850. crossref(new window)

Qi, Y. and Xia, P. 2012. Cellular inhibitor of apoptosis protein-1 (cIAP1) plays a critical role in β-cell survival under endoplasmic reticulum stress: promoting ubiquitination and degradation of C/EBP homologous protein (CHOP). J. Biol. Chem. 287, 32236-32245. crossref(new window)

Sitia, R. and Braakman, I. 2003. Quality control in the endoplasmic reticulum protein factory. Nature 426, 891-894. crossref(new window)

Tamura, G., Ando, K., Suzuki, S., Takatsuki, A. and Arima, K. 1968. Antiviral activity of brefeldin A and verrucarin A. J. Antibiot. 21, 160-161. crossref(new window)

Ubeda, M., Schmitt-Ney, M., Ferrer, J. and Habener, J. F. 1999. CHOP/GADD153 and methionyl-tRNA synthetase (MetRS) genes overlap in a conserved region that controls mRNA stability. Biochem. Biophys. Res. Commun. 262, 31-38. crossref(new window)

Wallen, E., Sellers, R. G. and Peehl, D. M. 2000. Brefeldin A induces p53-independent apoptosis in primary cultures of human prostatic cancer cells. Urology 164, 836-841. crossref(new window)

Wang, X. Z., Harding, H. P., Zhang, Y., Jolicoeur, E. M., Kuroda, M. and Ron, D. 1998. Cloning of mammalian Ire1reveals diversity in the ER stress response. EMBO J. 19, 5708-5717.

Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M. and Mori, K. 2000. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755-6767. crossref(new window)

Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L. and Ron, D. 1998. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982-995. crossref(new window)