JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 5,  2016, pp.603-607
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.5.603
 Title & Authors
Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106
Choi, Hye Jung; Hwang, Min Jung; Kim, Dong Wan; Joo, Woo Hong;
  PDF(new window)
 Abstract
A crude extracellular lipase from solvent-tolerant bacterium Pseudomonas sp. BCNU 106 was highly stable in the broad pH range of 4-10 and at temperature of 37℃. Crude lipase of BCNU 106 exhibited enhanced stability in 25% organic solvents such as xylene (121.85%), hexane (120.35%), octane (120.41 %), toluene (118.14%), chloroform (103.66%) and dodecane (102.94%) and showed excellent stability comparable with the commercial immobilized enzyme. In addition, the stability of BCNU 106 lipase retained above 110% of its enzyme activity in the presence of Cu2+, Hg2+, Zn2+ and Mn2+, whereas Fe2+ strongly inhibited its stability. The detergents including tween 80, triton X-100 and SDS were positive signals for lipase stability. Because of its stability in multiple organic solvents, cations and surfactants, the Pseudomonas sp. BCNU 106 lipase could be considered as a potential biocatalyst in the industrial chemical processes without using immobilization.
 Keywords
Lipolytic stability;organic solvent stable lipase;organic solvent-tolerant;Pseudomonas sp.;
 Language
Korean
 Cited by
 References
1.
Basheer, S. M., Chellappan, S., Beena, P. S., Sukumaran, R. K., Elyas, K. K. and Chandrasekaran, M. 2011. Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment. N. Biotechnol. 28, 627-638. crossref(new window)

2.
Ben Bacha, A., Moubayed, N. M. and Al‐Assaf, A. 2015. An organic solvent stable lipase from a newly isolated Staphylococcus aureus ALA1 strain with potential for use as an industrial biocatalyst. Biotechnol. Appl. Biochem. doi:10.1002/bab.1381. crossref(new window)

3.
Chiou, S. H. and Wu, W. T. 2004. Immobilization of Candida rugose lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25, 197-204. crossref(new window)

4.
Choi, H. J., Hwang, M. J., Seo, J. Y. and Joo, W. H. 2013. Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 154. J. Life Sci. 23, 1246-1251. crossref(new window)

5.
Choi, H. J., Kwon, G. S. and Joo, W. H. 2015. Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 171. J. Life Sci. 25, 345-348. crossref(new window)

6.
Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol. Bioprocess Eng. 18, 1000-1007. crossref(new window)

7.
Dahiya, P., Arora, P., Chaudhury, A., Chand, S. and Dilbaghi, N. 2010. Characterization of an extracellular alkaline lipase from Pseudomonas mendocina M-37. J. Basic Microbiol. 50, 420-426. crossref(new window)

8.
Fernandez-Lafuente, R. 2010. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. J. Mol. Catal., B Enzym. 62, 197-212. crossref(new window)

9.
Gilbert, E. J. 1993. Pseudomonas lipases: biochemical properties and molecular cloning. Enzyme Microb. Technol. 15, 634-645. crossref(new window)

10.
Hasan, F., Shah, A. A. and Hameed, A. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39, 235-251. crossref(new window)

11.
Jaeger, K. E. and Reetz, M. T. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16, 396-403. crossref(new window)

12.
Jain, D. and Mishra, S. 2015. Multifunctional solvent stable Bacillus lipase mediated biotransformations in the context of food and fuel. J. Mol. Catal., B Enzym. 117, 21-30. crossref(new window)

13.
Ji, Q., Xiao, S., He, B. and Liu, X. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LK1 and its application of biodiesel production. J. Mol. Catal., B Enzym. 66, 264-269. crossref(new window)

14.
Jose, C., Austic, G. B., Bonetto, R. D., Burton, R. M. and Briand, L. E. 2013. Investigation of the stability of Novozym® 435 in the production of biodiesel. Catal. Today 213, 73-80. crossref(new window)

15.
Ogino, H., Nakagawa, S., Shinya, K., Muto, T., Fujimura, N., Yasudo, N. and Ishikawa, H. 2000. Purification and characterization of organic solvent tolerant lipase from organic solvent tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 89, 451-457. crossref(new window)

16.
Rodrigues, R. C. and Fernandez-Lafuente, R. 2010. Lipase from Rhizomucor meihei as an industrial biocatalyst in chemical process. J. Mol. Catal., B Enzym. 654, 1-22.

17.
Romdhane, I. B., Fendri, A, Gargouri, Y., Gargouri, A. and Belghith, H. 2010. A novel ther-moactive and alkaline lipase from Talaromyces thermophilus fungus for use inlaundry detergents. Biochem. Eng. J. 53, 112-120. crossref(new window)

18.
Samaei-Nouroozi, A., Rezaei, S., Khoshnevis, N., Doosti, M., Hajihoseini, R., Khoshayand, M. R. and Faramarzi, M. A. 2015. Medium-based optimization of an organic solvent-tol erant extracellular lipase from the isolated halophilic Alkalibacillus salilacus. Extremophiles 19, 933-947. crossref(new window)

19.
Sharma, A. K., Tiwari, R. P. and Hoondal, G. S. 2001. Properties of a thermostable and solvent stable extracellular lipase from a Pseudomonas sp. AG-8. J. Basic Microbiol. 41, 363-366. crossref(new window)

20.
Singh, A. K. and Mukhopadhyay, M. 2012. Overview of fungal lipase: a review. Appl. Biochem. Biotechnol. 166, 486-520. crossref(new window)

21.
Tanaka, D., Yoneda, S., Yamashiro, Y., Sakatoku, A., Kayashima, T., Yamakawa, K. and Nakamura, S. 2012. Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl. Biochem. Biotechnol. 168, 327-338. crossref(new window)

22.
Yele, Y. U. and Desai, K. 2015. A new thermostable and organic solvent-tolerant lipase from Staphylococcus warneri; Optimization of media and production conditions using statistical methods. Appl. Biochem. Biotechnol. 175, 855-869. crossref(new window)