Advanced SearchSearch Tips
Green Tea Polyphenol Epigallocatechine Gallate (EGCG) Prevented LPS-induced BV-2 Micoglial Cell Activation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 6,  2016, pp.640-645
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.6.640
 Title & Authors
Green Tea Polyphenol Epigallocatechine Gallate (EGCG) Prevented LPS-induced BV-2 Micoglial Cell Activation
Park, Euteum; Chun, Hong Sung;
  PDF(new window)
Microglial cells are immediately activated in the central nervous system in response to a variety of neuronal environmental changes, such as injuries or inflammation. In addition to the modulation of the intrinsic immune response, a key role of microglial cells is the phagocytosis of dying cells and cellular debris. In this study, the inhibitory effects of epigallocatechine-3-gallate (EGCG), a most abundant and active polyphenol component of green tea, on lipopolysaccharide (LPS)-induced microglial activation are determined. EGCG dose dependently suppressed LPS-induced nitric oxide production and the expression of inducible nitric oxide synthase (iNOS) in BV-2 microglial cells. EGCG are potent LPS-induced inhibitors of several pro-inflammatory cytokine expressions, such as TNF-α and IL-1β, in microglial cells. Furthermore, EGCG generally inhibits the induction of LPS-mediated microglial activation and potently inhibits the phagocytosis of LPS-stimulated BV2 microglia. Although the conditioned media from LPS-stimulated BV-2 cells caused the SN4741 cell death, that from the conditioned media of EGCG pretreated BV-2 cells did not diminish the viability of SN4741 cells. These results suggest EGCG, a green tea polyphenol, could be a promising available molecule for the modulation of harmful microglial activation.
Cytokine;EGCG (epigallocatechine-3-gallate);inflammation;microglia;phagocytosis;
 Cited by
Inhibitory effect ofPetalonia binghamiaeon neuroinflammation in LPS-stimulated microglial cells, Journal of Nutrition and Health, 2017, 50, 1, 25  crossref(new windwow)
Beutler, B., Du, X. and Poltorak A. 2001. Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. J. Endotoxin Res. 7, 277-280. crossref(new window)

Chen, Z., Jalabi, W., Shpargel, K. B., Farabaugh, K.T., Dutta, R., Yin, X., Kidd, G. J., Bergmann, C. C., Stohlman, S. A. and Trapp, B. D. 2012. Lipopolysaccharide-induced microglial activation and neuroprotection against experimental brain injury is independent of hematogenous TLR4. J. Neurosci. 32, 11706-11715. crossref(new window)

Clement, Y. 2009. Can green tea do that? A literature review of the clinical evidence. Prev. Med. 49, 83-87. crossref(new window)

Collin, M., McGovern, N. and Haniffa, M. 2013. Human dendritic cell subsets. Immunology 140, 22-30. crossref(new window)

Colton, C. A. 2009. Heterogeneity of microglial activation in the innate immune response in the brain. J. Neuroimmune Pharmacol. 4, 399-418. crossref(new window)

Fuhrmann, M., Bittner, T., Jung, C. K., Burgold, S., Page, RM., Mitteregger, G., Haass, C., LaFerla, F. M., Kretzschmar, H. and Herms, J. 2010. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat. Neurosci. 13, 411-413. crossref(new window)

Gonzalez, H., Elgueta, D., Montoya, A. and Pacheco, R. 2014. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J. Neuroimmunol. 274, 1-13. crossref(new window)

Hirsch, E. C. and Hunot, S. 2009. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382-387. crossref(new window)

Kamon, M., Zhao, R. and Sakamoto, K. 2010. Green tea polyphenol (−)-epigallocatechin gallate suppressed the differentiation of murine osteoblastic MC3T3-E1 cells. Cell Biol. Int. 34, 109-416.

Khandelwal, P. J., Herman, A. M. and Moussa, C. E. 2011. Inflammation in the early stages of neurodegenerative pathology. J. Neuroimmunol. 238, 1-11. crossref(new window)

Li, Y., Du, X. F., Liu, C. S., Wen, Z. L. and Du, J. L. 2012. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev. Cell 23, 1189-1202. crossref(new window)

Maetzler, W., Apel, A., Langkamp, M., Deuschle, C., Dilger, S. S. and Stirnkorb, J. G., 2014. Comparable auto antibody serum levels against amyloid-and inflammation-associated proteins In Parkinson’s disease patients and controls. PLoS One 9, 88604. crossref(new window)

Seija, L. 2010. Innate immunity and neuroinflammation in the CNS: The role of microglia in toll-like receptor- mediated neuronal injury. GLIA 58, 253-263.

Shenouda, S. M. and Vita, J. A. 2007. Effects of flavonoidcontaining beverages and EGCG on endothelial function. J. Am. Coll. Nutr. 26, 366-372. crossref(new window)

Singh, B. N., Shankar, S. and Srivastava, R. K. 2010. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 82, 1807-1821.

Takeuchi, H., Mizoguchi, H., Doi, Y., Jin, S., Noda, M., Liang, J., Li, H., Zhou, Y., Mori, R., Yasuoka, S., Li, E., Parajuli, B., Kawanokuchi, J., Sonobe, Y., Sato, J., Yamanaka, K., Sobue, G., Mizuno, T. and Suzumura, A. 2011. Blockade of gap junction hemichanel suppresses disease progression in mouse models of amyotrophic lateral sclerosis and Alzheimer’s disease. PLoS One 6, 21108. crossref(new window)

Whitney, N. P., Eidem, T. M., Peng, H., Huang, Y. and Zheng, J. C. 2009. Inflammation mediates varying effects in neurogenesis: Relevance to the pathogenesis of brain injury and neurodegenerative disorders. J. Neurochem. 108, 1343-1359. crossref(new window)

Wilms, H., Rosenstiel, P., Sievers, J., Deuschl, G., Zecca, L. and Lucius, R. 2003. Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J. 17, 500-507.

Zecca, L., Wilms, H., Geick, S., Claasen, J. H., Brandenburg, L. O. and Holzknecht, C. 2008. Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson’s disease. Acta Neuropathol. 116, 47-55. crossref(new window)