Advanced SearchSearch Tips
Ferritin, an Iron Storage Protein, Associates with Kinesin 1 through the Cargo-binding Region of Kinesin Heavy Chains (KHCs)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 6,  2016, pp.698-704
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.6.698
 Title & Authors
Ferritin, an Iron Storage Protein, Associates with Kinesin 1 through the Cargo-binding Region of Kinesin Heavy Chains (KHCs)
Jang, Won Hee; Jeong, Young Joo; Lee, Won Hee; Kim, Mooseong; Kim, Sang-Jin; Urm, Sang-Hwa; Moon, Il Soo; Seog, Dae-Hyun;
  PDF(new window)
The intracellular transport of organelles and protein complexes is mediated by kinesin superfamily proteins (KIFs). The first kinesin, kinesin 1, was identified as a molecular motor protein that moves various organelles and protein complexes along the microtubule rails in cells. Kinesin 1 is a tetramer of two heavy chains (KHCs, also called KIF5s) and two kinesin light chains (KLCs). KIF5s interact with many different proteins through their tail region, but their binding proteins have not yet been fully identified. To identify the interaction proteins for KIF5A, we performed yeast two-hybrid screening and found a specific interaction with ferritin heavy chain (Frt-h), which has a role in iron storage and detoxification. Frt-h bound to the amino acid residues between 800 and 940 of KIF5A and to other KIF5s in the yeast two-hybrid assay. The coiled-coil domain of Frt-h is essential for interaction with KIF5A. In addition, ferritin light chain (Frt-l) interacted with KIF5s in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to KHC specifically co-immunoprecipitated Frt-h and Frt-l from mouse brain extracts. These results suggest the kinesin 1 motor protein may transport the ferritin complex in cells.
Cargo;ferritin;kinesin 1;microtubule motors;protein-protein interaction;
 Cited by
Beaumont, C., Dugast, I., Renaudie, F., Souroujon, M. and Grandchamp, B. 1989. Transcriptional regulation of ferritin H and L subunits in adult erythroid and liver cells from the mouse. J. Biol. Chem. 264, 7498-7504.

Brendza, R. P., Serbus, L. R., Duffy, J. B. and Saxton, W. M. 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122. crossref(new window)

Connor, J. R., Boeshore, K. L., Benkovic, S. A. and Menzies, S. L. 1994. Isoforms of ferritin have a specific cellular distribution in the brain. J. Neurosci. Res. 37, 461-465. crossref(new window)

Diefenbach, R. J., Mackay, J. P., Armati, P. J. and Cunningham, A. L. 1998. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663-16670. crossref(new window)

Diefenbach, R. J., Miranda-Saksena, M., Diefenbach, E., Holland, D. J., Boadle, R. A., Armati, P. J. and Cunningham, A. L. 2002. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J. Virol. 76, 3282-3291. crossref(new window)

Friedman, A., Arosio, P., Finazzi, D., Koziorowski, D. and Galazka-Friedman, J. 2011. Ferritin as an important player in neurodegeneration. Parkinsonism Relat. Disord. 17, 423-430. crossref(new window)

Gorska-Andrzejak, J., Stowers, R. S., Borycz, J., Kostyleva, R., Schwarz, T. L. and Meinertzhagen, I. A. 2003. Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J. Comp. Neurol. 463, 372-388. crossref(new window)

Hirokawa, N. 1998. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519-526. crossref(new window)

Hirokawa, N. and Takemura, R. 2005. Molecular motors and mechanisms of directional transport in neurons. Nat. Rev. Neurosci. 6, 201-214. crossref(new window)

Hirokawa, N., Niwa, S. and Tanaka, Y. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638. crossref(new window)

Jang, W. H. and Seog, D. H. 2013. Kinesin superfamily-associated protein 3 (KAP3) mediates the interaction between Kinesin-II motor subunits and HS-1-associated protein X-1 (HAX-1) through direct binding. J. Life Sci. 23, 978-983. crossref(new window)

Jang, W. H., Kim, S. J., Jeong, Y. J., Jun, H. J., Moon, I. S. and Seog, D. H. 2012. APP tail 1 (PAT1) interacts with Kinesin light chains (KLCs) through the tetratricopeptide repeat (TPR) domain. J. Life Sci. 22, 1608-1613. crossref(new window)

Kamal, A. and Goldstein, L. S. 2000. Connecting vesicle transport to the cytoskeleton. Curr. Opin. Cell Biol. 12, 503-508. crossref(new window)

Kanai, Y., Dohmae, N. and Hirokawa, N. 2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43, 513-525. crossref(new window)

Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S. and Hirokawa, N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384.

Lawson, D. L., Treffry, A., Artymiuk, P. J., Harrison, P. M., Yewdall, S. J., Luzzago, A., Cesareni, G., Levi, S. and Arosio, P. 1989. Identification of the ferroxidase centre in ferritin. FEBS Lett. 254, 207-210. crossref(new window)

Levi, S., Santambrogio, P., Cozzi, A., Rovida, E., Corsi, B., Tamborini, E., Spada, S., Albertini, A. and Arosio, P. 1994. The role of the L-chain in ferritin iron incorporation: studies of homo and heteropolymers, J. Mol. Biol. 238, 649-654. crossref(new window)

Li, X. J., Li, S. H., Sharp, A. H., Nucifora Jr, F. C., Schilling, G., Lanahan, A., Worley, P., Snyder, S. H. and Ross, C. A. 1995. A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398-402. crossref(new window)

Nakajima, K., Yin, X., Takei, Y., Seog, D. H., Homma, N. and Hirokawa, N. 2012. Molecular motor KIF5A is essentialfor GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 76, 945-961. crossref(new window)

Pountney, D., Trugnan, G., Bourgeois, M. and Beaumont, C. 1999. The identification of ferritin in the nucleus of K562 cells, and investigation of a possible role in the transcriptional regulation of adult beta globin gene expression. J. Cell Sci. 112, 825-831.

Reid, E., Kloos, M., Ashley-Koch, A., Hughes, L., Bevan, S., Svenson, I. K., Graham, F. L., Gaskell, P. C., Dearlove, A., Pericak-Vance, M. A., Rubinsztein, D. C. and Marchuk, D. A. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189-1194. crossref(new window)

Rietdorf, J., Ploubidou, A., Reckmann, I., Holmström, A., Frischknecht, F., Zettl, M., Zimmermann, T. and Way, M. 2001. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nat. Cell Biol. 3, 992-1000. crossref(new window)

Seog, D. H., Lee, D. H. and Lee, S. K. 2004. Molecular Motor Proteins of the Kinesin superfamily proteins (KIFs): Structure, Cargo and Disease. J. Kor. Med. Sci. 19, 1-7. crossref(new window)

Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., Kawagishi, M. and Hirokawa, N. 2002. Glutamate-receptorinteracting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87. crossref(new window)

Surguladze, N., Patton, S., Cozzi, A., Fried, M. G. and Connor, J. R. 2005. Characterization of nuclear ferritin and mechanisms of translocation. Biochem. J. 388, 731-740. crossref(new window)

Thompson, K. J., Fried, M. G., Ye, Z., Boyer, P. and Connor, J. R. 2002. Regulation, mechanisms and proposed function of ferritin translocation to cell nuclei. J. Cell Sci. 115, 2165-2177.

Welte, M. A. 2004. Bidirectional transport along microtubules. Curr. Biol. 14, 525-537. crossref(new window)

Xia, C. H., Roberts, E. A., Her, L. S., Liu, X., Williams, D. S., Cleveland, D. W. and Goldstein, L. S. 2003. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J. Cell Biol. 161, 55-66. crossref(new window)