Advanced SearchSearch Tips
Pharmaco-medical Application of Antimicrobial Peptides Derived from Insect
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 6,  2016, pp.737-748
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.6.737
 Title & Authors
Pharmaco-medical Application of Antimicrobial Peptides Derived from Insect
Lee, Joon Ha; Kim, In-Woo; Kim, Mi-Ae; Yun, Eun Young; Hwang, Jae Sam;
  PDF(new window)
By this time, insect antimicrobial peptides (AMPs) have been characterized more than 150 peptides since purification of cecropin in the hemolymph of pupae from Hyalophora cecropia in 1980. Therefore, it is considered that insects are good sources of AMP selection. Insect AMPs are small (low molecular weight) and cationic, and amphipathic with variable length, sequence, and structure. They perform a pivotal role on humoral immunity in the insect innate immune system against invading pathogens such as bacteria, fungi, parasites, and viruses. Most of the insect AMPs are induced rapidly in the fat bodies and other specific tissues of insects after septic injury or immune challenge. Then the AMPs subsequently released into the hemolymph to act against microorganisms. These peptides have a broad antimicrobial spectrum against various microbes including anticancer activities. Insect AMPs could be divided into four families based on their structures and sequences. That is the α-helical peptides, cysteine-rich peptides, proline-rich peptides, and glycine-rich peptides/proteins. For instance, cecropins, insect defensins, proline-rich peptides, and attacins are common insect AMPs, but gloverins and moricins have been identified only in lepidopteran species. This review focuses on AMPs from insects and discusses current knowledge and recent progress with potential applications of insect AMPs.
Antimicrobial activity;antimicrobial peptides;innate immunity;insect;pathogen;
 Cited by
Alberola, J., Rodriguez, A., Francino, O., Roura, X., Rivas, L. and Andreu, D. 2004. Safety and efficacy of antimicrobial peptides against naturally acquired leishmaniasis. Antimicrob. Agents Chemother. 48, 641-643. crossref(new window)

Arrowood, M. J., Jaynes, J. M. and Healey, M. C. 1991. In vitro activities of lytic peptides against the sporozoites of Cryptosporidium parvum. Antimicrob. Agents Chemother. 35, 224-227. crossref(new window)

Asling, B., Dushay M. S. and Hultmark, D. 1995. Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem. Mol. Biol. 25, 511-518. crossref(new window)

Axen, A., Carlsson, A., Engstrom, A. and Bennich, H. 1997. Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. Eur. J. Biochem. 247, 614-619. crossref(new window)

Bang, K., Park, S., Yoo, J. Y. and Cho, S. 2012. Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hubner) (Insecta: Lepidoptera: Noctuidae). Mol. Biol. Rep. 39, 5151-5159. crossref(new window)

Bao, Y., Yamano, Y. and Morishima, I. 2005. A novel lebocin-like gene from eri-silkworm, Samia cynthia ricini, that does not encode the antibacterial peptide lebocin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 140, 127-131. crossref(new window)

Barr, S. C., Rose, D. and Jaynes, J. M. 1995. Activity of lytic peptides against intracellular Trypanosoma cruzi amastigotes in vitro and parasitemias in mice. J. Parasitol. 81, 974-978. crossref(new window)

Boisbouvier, J., Prochnicka-Chalufour, A., Nieto, A. R., Torres, J. A., Nanard, N., Rodriguez, M. H., Possani, L. D. and Delepierre, M. 1998. Structural information on a cecropin-like synthetic peptide, Shiva-3 toxic to the sporogonic development of Plasmodium berghei. Eur. J. Biochem. 257, 263-273. crossref(new window)

Boman, H. G., Nilsson-Faye, I., Paul, K. and Rasmuson, T. Jr. 1974. Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect. Immun. 10, 136-145.

Boulanger, N., Brun, R., Ehret-Sabatier, L., Kunz, C. and Bulet, P. 2002a. Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem. Mol. Biol. 32, 369-375. crossref(new window)

Boulanger, N., Munks, R. J., Hamilton, J. V., Vovelle, F., Brun, R., Lehane, M. J. and Bulet, P. 2002b. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J. Biol. Chem. 277, 49921-49926. crossref(new window)

Brown, S. E., Howard, A., Kasprzak, A. B., Gordon, K. H. and East, P. D. 2008. The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella. Insect Biochem. Mol. Biol. 38, 201-212. crossref(new window)

Bulet, P., Cociancich, S., Dimarcq, J. L., Lambert, J., Reichhart, J. M., Hoffmann, D., Hetru, C. and Hoffmann, J. A. 1991. Insect immunity. Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family. J. Biol. Chem. 266, 24520-24525.

Bulet, P., Cociancich, S., Reuland, M., Sauber, F., Bischoff, R., Hegy, G., Van, Dorsselaer, A., Hetru, C. and Hoffmann, J. A. 1992. A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). Eur. J. Biochem. 209, 977-984. crossref(new window)

Bulet, P., Dimarcq, J. L., Hetru, C., Lagueux, M., Charlet, M., Hegy, G., Van, Dorsselaer, A. and Hoffmann, J. A. 1993. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268, 14893-14897.

Bulet, P. and Stocklin, R. 2005. Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 12, 3-11. crossref(new window)

Carlsson, A., Engstrom, P., Palva, E. T. and Bennich, H. 1991. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect. Immun. 59, 3040-3045.

Carlsson, A., Nystrom, T., de, Cock, H. and Bennich, H. 1998. Attacin-an insect immune protein–binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology 144, 2179-2188. crossref(new window)

Casteels, P., Ampe, C., Jacobs, F., Vaeck, M. and Tempst, P. 1989. Apidaecins: antibacterial peptides from honeybees. EMBO J. 8, 2387-2391.

Casteels, P., Ampe, C., Riviere, L., Van, Damme, J., Elicone, C., Fleming, M., Jacobs, F. and Tempst, P. 1990. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur. J. Biochem. 187, 381-386. crossref(new window)

Cavallarin, L., Andreu, D. and San, Segundo, B. 1998. Cecropin A-derived peptides are potent inhibitors of fungal plant pathogens. Mol. Plant Microbe Interact. 11, 218-227. crossref(new window)

Cerovsky, V., Zdarek, J., Fucik, V., Monincova, L., Voburka, Z. and Bem, R. 2010. Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell. Mol. Life Sci. 67, 455-466. crossref(new window)

Chalekson, C. P., Neumeister, M. W. and Jaynes, J. 2003. Treatment of infected wound with the antimicrobial peptide D2A21. J. Trauma 54, 770-774. crossref(new window)

Chen, H. M., Wang, W., Smith, D. and Chan, S. C. 1997. Effects of the antibacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim. Biophys. Acta 1336, 171-179. crossref(new window)

Chowdhury, S., Taniai, K., Hara, S., Kadono-Okuda, K., Kato, Y., Yamamoto, M., Xu, J., Choi, S. K., Debnath, N. C., Choi, H. K., Miyanoshita, A., Sugiyama, M., Asaoka, A. and Yamakawa, M. 1995. cDNA cloning and gene expression of lebocin, a novel member of antibacterial peptides from the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun. 214, 271-278. crossref(new window)

Cho, W. L., Fu, Y. C., Chen, C. C. and Ho, C. M. 1996. Cloning and characterization of cDNAs encoding the antibacterial peptide, defensin A, from the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 26, 395-402. crossref(new window)

Cociancich, S., Dupont, A., Hegy, G., Lanot, R., Holder, F., Hetru, C., Hoffmann, J. A. and Bulet, P. 1994. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem. J. 300, 567-575. crossref(new window)

Cociancich, S., Ghazi, A., Hetru, C., Hoffmann, J. A. and Letellier, L. 1993. Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J. Biol. Chem. 268, 19239-19245.

Dai, H., Rayaprolu, S., Gong, Y., Huang, R., Prakash, O. and Jiang, H. 2008. Solution structure, antibacterial activity, and expression profile of Manduca sexta moricin. J. Pept. Sci. 14, 855-863. crossref(new window)

Da, Silva, P., Jouvensal, L., Lamberty, M., Bulet, P., Caille, A. and Vovelle, F. 2003. Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci. 12, 438-446. crossref(new window)

DeLucca, A. J., Bland, J. M., Jacks, T. J., Grimm, C., Cleveland, T. E. and Walsh, T. J. 1997. Fungicidal activity of cecropin A. Antimicrob. Agents Chemother. 41, 481-483.

Dimarcq, J. L., Zachary, D., Hoffmann, J. A., Hoffmann, D. and Reichhart, J. M. 1990. Insect immunity: expression of the two major inducible antibacterial peptides, defensin and diptericin, in Phormia terranovae. EMBO J. 9, 2507-2515.

Dushay, M. S., Roethele, J. B., Chaverri, J. M., Dulek, D. E., Syed, S. K., Kitami, T. and Eldon, E. D. 2000. Two attacin antibacterial genes of Drosophila melanogaster. Gene 246, 49-57. crossref(new window)

Ekengren, S. and Hultmark, D. 1999. Drosophila cecropin as an antifungal agent. Insect Biochem. Mol. Biol. 29, 965-972. crossref(new window)

Engstrom, P., Carlsson, A., Engstrom, A., Tao, Z. J. and Bennich, H. 1984b. The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J. 3, 3347-3351.

Faye, I., Pye, A., Rasmuson, T., Boman, H. G. and Boman, I. A. 1975. Insect immunity. 11. Simultaneous induction of antibacterial activity and selection synthesis of some hemolymph proteins in diapausing pupae of Hyalophora cecropia and Samia cynthia. Infect. Immun. 12, 1426-1438.

Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T. and Kobayashi, K. 1990. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J. Biol. Chem. 265, 11333-11337.

Ganz, T. and Lehrer, R. I. 1994. Defensins. Curr. Opin. Immunol. 6, 584-589. crossref(new window)

Gunne, H., Hellers, M. and Steiner, H. 1990. Structure of preproattacin and its processing in insect cells infected with a recombinant baculovirus. Eur. J. Biochem. 187, 699-703. crossref(new window)

Gwadz, R. W., Kaslow, D., Lee, J. Y., Maloy, W. L., Zasloff, M. and Miller, L. H. 1989. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect. Immun. 57, 2628-2633.

Hao, Z., Kasumba, I., Lehane, M. J., Gibson, W. C., Kwon, J. and Aksoy, S. 2001. Tsetse immune responses and trypanosome transmission: implications for the development of tsetse-based strategies to reduce trypanosomiasis. Proc. Natl. Acad. Sci. USA 98, 12648-12653. crossref(new window)

Hara, S. and Yamakawa, M. 1995a. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J. Biol. Chem. 270, 29923-29927. crossref(new window)

Hara, S. and Yamakawa, M. 1995b. A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem. J. 310, 651-656. crossref(new window)

Hedengren, M., Borge, K. and Hultmark, D. 2000. Expression and evolution of the Drosophila attacin/diptericin gene family. Biochem. Biophys. Res. Commun. 279, 574-581. crossref(new window)

Hemmi, H., Ishibashi, J., Hara, S. and Yamakawa, M. 2002. Solution structure of moricin, an antibacterial peptide, isolated from the silkworm Bombyx mori. FEBS Lett. 518, 33-38. crossref(new window)

Hultmark, D., Engstrom, A., Andersson, K., Steiner, H., Bennich, H. and Boman, H. G. 1983. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J. 2, 571-576.

Hu, Y. and Aksoy, S. 2005. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans. Insect Biochem. Mol. Biol. 35, 105-115. crossref(new window)

Hultmark, D., Engstrom, A., Bennich, H., Kapur, R. and Boman, H. G. 1982. Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem. 127, 207-217. crossref(new window)

Hultmark, D., Steiner, H., Rasmuson, T. and Boman, H. G. 1980. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 106, 7-16.

Hwang, J. and Kim, Y. 2011. RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodoptera exigua, enhances susceptibility to Bacillus thuringiensis. J. Invertebr. Pathol. 108, 194-200. crossref(new window)

Hwang, J. S., Lee, J., Kim, Y. J., Bang, H. S., Yun, E. Y., Kim, S. R., Suh, H. J., Kang, B. R., Nam, S. H., Jeon, J. P., Kim, I. and Lee, D. G. 2009. Isolation and characterization of a defensin-like peptide (coprisin) from the dung beetle, Copris tripartitus. Int. J. Pept. 2009, 136284.

Imler, J. L. and Bulet, P. 2005. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy 86, 1-21.

Jaynes, J. M., Burton, C. A., Barr, S. B., Jeffers, G. W., Julian, G. R., White, K. L., Enright, F. M., Klei, T. R. and Laine, R. A. 1988. In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J. 2, 2878-2883. crossref(new window)

Kaneko, Y., Tanaka, H., Ishibashi, J., Iwasaki, T. and Yamakawa, M. 2008. Gene expression of a novel defensin antimicrobial peptide in the silkworm, Bombyx mori. Biosci. Biotechnol. Biochem. 72, 2353-2361. crossref(new window)

Kang, D., Lundstrom, A. and Steiner, H. 1996. Trichoplusia ni attacin A, a differentially displayed insect gene coding for an antibacterial protein. Gene 174, 245-249. crossref(new window)

Kawaoka, S., Katsuma, S., Daimon, T., Isono, R., Omuro, N., Mita, K. and Shimada, T. 2008. Functional analysis of four Gloverin-like genes in the silkworm, Bombyx mori. Arch. Insect Biochem. Physiol. 67, 87-96. crossref(new window)

Kim, S. R., Hong, M. Y., Park, S. W., Choi, K. H., Yun, E. Y., Goo, T. W., Kang, S. W., Suh, H. J., Kim, I. and Hwang, J. S. 2010. Characterization and cDNA cloning of a cecropin-like antimicrobial peptide, papiliocin, from the swallowtail butterfly, Papilio xuthus. Mol. Cells 29, 419-423. crossref(new window)

Kishimoto, K., Fujimoto, S., Matsumoto, K., Yamano, Y. and Morishima, I. 2002. Protein purification, cDNA cloning and gene expression of attacin, an antibacterial protein, from eri-silkworm, Samia cynthia ricini. Insect Biochem. Mol. Biol. 32, 881-887. crossref(new window)

Kockum, K., Faye, I., Hofsten, P. V., Lee, J. Y., Xanthopoulos, K. G. and Boman, H. G. 1984. Insect immunity. Isolation and sequence of two cDNA clones corresponding to acidic and basic attacins from Hyalophora cecropia. EMBO J. 3, 2071-2075.

Kwon, Y. M., Kim, H. J., Kim, Y. I., Kang, Y. J., Lee, I. H., Jin, B. R., Han, Y. S., Cheon, H. M., Ha, N. G. and Seo, S. J. 2008. Comparative analysis of two attacin genes from Hyphantria cunea. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 151, 213-220. crossref(new window)

Lambert, J., Keppi, E., Dimarcq, J. L., Wicker, C., Reichhart, J. M., Dunbar, B., Lepage, P., Van, Dorsselaer, A., Hoffmann, J., Fothergill, J. and Hoffmann, D. 1989. Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci. USA 86, 262-266. crossref(new window)

Lamberty, M., Ades, S., Uttenweiler-Joseph, S., Brookhart, G., Bushey, D., Hoffmann, J. A. and Bulet, P. 1999. Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J. Biol. Chem. 274, 9320-9326. crossref(new window)

Landon, C., Meudal, H., Boulanger, N., Bulet, P. and Vovelle, F. 2006. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation. Biopolymers 81, 92-103. crossref(new window)

Landon, C., Sodano, P., Hetru, C., Hoffmann, J. and Ptak, M. 1997. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci. 6, 1878-1884. crossref(new window)

Lavine, M. D., Chen, G. and Strand, M. R. 2005. Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens. Insect Biochem. Mol. Biol. 35, 1335-1346. crossref(new window)

Lee, S. Y., Moon, H. J., Kawabata, S., Kurata, S., Natori, S. and Lee, B. L. 1995. A sapecin homologue of Holotrichia diomphalia: purification, sequencing and determination of disulfide pairs. Biol. Pharm. Bull. 18, 457-459. crossref(new window)

Lee, Y. S., Yun, E. K., Jang, W. S., Kim, I., Lee, J. H., Park, S. Y., Ryu, K. S., Seo, S. J., Kim, C. H. and Lee, I. H. 2004. Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol. Biol. 13, 65-72. crossref(new window)

Lehane, M. J., Wu, D. and Lehane, S. M. 1997. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc. Natl. Acad. Sci. USA 94, 11502-11507. crossref(new window)

Levashina, E. A., Ohresser, S., Bulet, P., Reichhart, J. M., Hetru, C. and Hoffmann, J. A. 1995. Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 233, 694-700. crossref(new window)

Li, Z. Q., Merrifield, R. B., Boman, I. A. and Boman, H. G. 1988. Effects on electrophoretic mobility and antibacterial spectrum of removal of two residues from synthetic sarcotoxin IA and addition of the same residues to cecropin B. FEBS Lett. 231, 299-302. crossref(new window)

Liu, G., Kang, D. and Steiner, H. 2000. Trichoplusia ni lebocin, an inducible immune gene with a downstream insertion element. Biochem. Biophys. Res. Commun. 269, 803-807. crossref(new window)

Lowenberger, C., Bulet, P., Charlet, M., Hetru, C., Hodgeman, B., Christensen, B. M. and Hoffmann, J. A. 1995. Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 25, 867-873. crossref(new window)

Lundstrom, A., Liu, G., Kang, D., Berzins, K. and Steiner, H. 2002. Trichoplusia ni gloverin, an inducible immune gene encoding an antibacterial insect protein. Insect Biochem. Mol. Biol. 32, 795-801. crossref(new window)

Mackintosh, J. A., Gooley, A. A., Karuso, P. H., Beattie, A. J., Jardine, D. R. and Veal, D. A. 1998a. A gloverin-like antibacterial protein is synthesized in Helicoverpa armigera following bacterial challenge. Dev. Comp. Immunol. 22, 387-399. crossref(new window)

Mackintosh, J. A., Veal, D. A., Beattie, A. J. and Gooley, A. A. 1998b. Isolation from an ant Myrmecia gulosa of two inducible O-glycosylated proline-rich antibacterial peptides. J. Biol. Chem. 273, 6139-6143. crossref(new window)

Matsuyama, K. and Natori, S. 1988a. Molecular cloning of cDNA for sapecin and unique expression of the sapecin gene during the development of Sarcophaga peregrina. J. Biol. Chem. 263, 17117-17121.

Matsuyama, K. and Natori, S. 1988b. Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J. Biol. Chem. 263, 17112-17116.

Moon, H. J., Lee, S. Y., Kurata, S., Natori, S. and Lee, B. L. 1994. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J. Biochem. 116, 53-58. crossref(new window)

Moore, A. J., Beazley, W. D., Bibby, M. C. and Devine, D. A. 1996. Antimicrobial activity of cecropins. J. Antimicrob. Chemother. 37, 1077-1089. crossref(new window)

Moreno-Habel, D. A., Biglang-awa, I. M., Dulce, A., Luu, D. D., Garcia, P., Weers, P. M. and Haas-Stapleton, E. J. 2012. Inactivation of the budded virus of Autographa californica M nucleopolyhedrovirus by gloverin. J. Invertebr. Pathol. 110, 92-101. crossref(new window)

Mrinal, N. and Nagaraju, J. 2008. Intron loss is associated with gain of function in the evolution of the gloverin family of antibacterial genes in Bombyx mori. J. Biol. Chem. 283, 23376-23387. crossref(new window)

Nakajima, Y., Qu, X. M. and Natori, S. 1987. Interaction between liposomes and sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina (flesh fly). J. Biol. Chem. 262, 1665-1669.

Oh, D., Shin, S. Y., Lee, S., Kang, J. H., Kim, S. D., Ryu, P. D., Hahm, K. S. and Kim, Y. 2000. Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 39, 11855-11864. crossref(new window)

Oizumi, Y., Hemmi, H., Minami, M., Asaoka, A. and Yamakawa, M. 2005. Isolation, gene expression and solution structure of a novel moricin analogue, antibacterial peptide from a lepidopteran insect, Spodoptera litura. Biochim. Biophys. Acta 1752, 83-92. crossref(new window)

Okada, M. and Natori, S. 1985. Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J. Biol. Chem. 260, 7174-7177.

Otvos, L. Jr. 2000. Antibacterial peptides isolated from insects. J. Pept. Sci. 6, 497-511. crossref(new window)

Ourth, D. D., Lockey, T. D. and Renis, H. E. 1994. Induction of cecropin-like and attacin-like antibacterial but not antiviral activity in Heliothis virescens larvae. Biochem. Biophys. Res. Commun. 200, 35-44. crossref(new window)

Rao, X. J., Xu, X. X. and Yu, X. Q. 2012. Functional analysis of two lebocin related proteins from Manduca sexta. Insect Biochem. Mol. Biol. 42, 231-239. crossref(new window)

Rao, X. J. and Yu, X. Q. 2010. Lipoteichoic acid and lipopolysaccharide can activate antimicrobial peptide expression in the tobacco hornworm Manduca sexta. Dev. Comp. Immunol. 34, 1119-1128. crossref(new window)

Rayaprolu, S., Wang, Y., Kanost, M. R., Hartson, S. and Jiang, H. 2010. Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manduca sexta. Dev. Comp. Immunol. 34, 638-647. crossref(new window)

Rees, J. A., Moniatte, M. and Bulet, P. 1997. Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect Biochem. Mol. Biol. 27, 413-422. crossref(new window)

Robertson, M. and Postlethwait, J. H. 1986. The humoral antibacterial response of Drosophila adults. Dev. Comp. Immunol. 10, 167-179. crossref(new window)

Rodriguez, M. C., Zamudio, F., Torres, J. A., Gonzalez-Ceron, L., Possani, L. D. and Rodriguez, M. H. 1995. Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei. Exp. Parasitol. 80, 596-604. crossref(new window)

Samakovlis, C., Kimbrell, D. A., Kylsten, P., Engstrom, A. and Hultmark, D. 1990. The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J. 9, 2969-2976.

Schroder, J. M. and Harder, J. 2006. Antimicrobial peptides in skin disease. Drug Discovery Today: Therapeutic Strategies 3, 93-100. crossref(new window)

Schuhmann, B., Seitz, V., Vilcinskas, A. and Podsiadlowski, L. 2003. Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53, 125-133. crossref(new window)

Seufi, A. M., Hafez, E. E. and Galal, F. H. 2011. Identification, phylogenetic analysis and expression profile of an anionic insect defensin gene, with antibacterial activity, from bacterial-challenged cotton leafworm, Spodoptera littoralis. BMC Mol. Biol. 12, 47. crossref(new window)

Steiner, H., Hultmark, D., Engstrom, A., Bennich, H. and Boman, H. G. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292, 246-248. crossref(new window)

Stork, N. E., McBroom, J., Gely, C. and Hamilton, A. J. 2015. New approaches narrow global species estimates for beetles, insects, and terrestrial arthropods. Proc. Natl. Acad. Sci. USA 112, 7519-7523. crossref(new window)