Advanced SearchSearch Tips
An efficient gene targeting system using homologous recombination in plants
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Plant Biotechnology
  • Volume 42, Issue 3,  2015, pp.154-160
  • Publisher : The Korean Society of Plant Biotechnology
  • DOI : 10.5010/JPB.2015.42.3.154
 Title & Authors
An efficient gene targeting system using homologous recombination in plants
Kwon, Yong-Ik; Lee, Hyo-Yeon;
  PDF(new window)
The plant breeding technology was developed with genetic engineering. Many researchers and breeders have turned from traditional breeding to molecular breeding. Genetically modified organisms (GMO) were developed via molecular breeding technology. Currently, molecular breeding technologies facilitate efficient plant breeding without introducing foreign genes, in virtue by of gene editing technology. Gene targeting (GT) via homologous recombination (HR) is one of the best gene editing methods available to modify specific DNA sequences in genomes. GT utilizes DNA repair pathways. Thus, DNA repair systems are controlled to enhance HR processing. Engineered sequence specific endonucleases were applied to improve GT efficiency. Engineered sequence specific endonucleases like the zinc finger nuclease (ZFN), TAL effector nuclease (TALEN), and CRISPR-Cas9 create DNA double-strand breaks (DSB) that can stimulate HR at a target site. RecQl4, Exo1 and Rad51 are effectors that enhance DSB repair via the HR pathway. This review focuses on recent developments in engineered sequence specific endonucleases and ways to improve the efficiency of GT via HR effectors in plants.
Gene editing;Gene targeting;Homologous recombination;Engineered endonucleases;
 Cited by
Abe K, Osakabe K, Nakayama S, et al (2005) Arabidopsis RAD51C Gene Is Important for Homologous Recombination in Meiosis and Mitosis. Plant Physiol 139:896-908 crossref(new window)

Alonso JM, Stepanova AN, Leisse TJ, et al (2003) Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301:653-657 crossref(new window)

An S, Park S, Jeong D-H, et al (2003) Generation and Analysis of End Sequence Database for T-DNA Tagging Lines in Rice. Plant Physiol 133:2040-2047 crossref(new window)

Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145-149 crossref(new window)

Belhaj K, Chaparro-Garcia A, Kamoun S, et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76-84 crossref(new window)

Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41-52 crossref(new window)

Cary LC, Goebel M, Corsaro BG, et al (1989) Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156-169 crossref(new window)

Endo M, Ishikawa Y, Osakabe K, et al (2006a) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25:5579-5590 crossref(new window)

Endo M, Osakabe K, Ichikawa H, Toki S (2006b) Molecular Characterization of True and Ectopic Gene Targeting Events at the Acetolactate Synthase Gene in Arabidopsis. Plant Cell Physiol 47:372-379 crossref(new window)

Endo M, Osakabe K, Ono K, et al (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157-166 crossref(new window)

Endo M, Toki S (2014) Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatal Agric Biotechnol 3:2-6

Fu Y, Foden JA, Khayter C, et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822-826 crossref(new window)

Gaj T, Gersbach CA, Barbas III CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397-405 crossref(new window)

Gao J, Wang G, Ma S, et al (2014) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99-110

Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742-752 crossref(new window)

Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113-139 crossref(new window)

Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8:51-53

Iida S, Terada R (2005) Modification of Endogenous Natural Genes by Gene Targeting in Rice and Other Higher Plants. Plant Mol Biol 59:205-219 crossref(new window)

Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132-138 crossref(new window)

James C (2013) Global Status of Commercialized Biotech/GM Crops. ISAAA: Ithaca, NY., ISAAA Brief

Johnson RA, Gurevich V, Filler S, et al (2014) Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta. Plant Mol Biol 87:143-156

Kaufmann KB, Buning H, Galy A, et al (2013) Gene therapy on the move. EMBO Mol Med 5:1642-1661 crossref(new window)

Kaul MLH, Bhan DAK (1977) Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theor Appl Genet 50:241-246 crossref(new window)

Kikuchi K, Abdel-Aziz HI, Taniguchi Y, et al (2009) Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences. J Biol Chem 284:26360-26367 crossref(new window)

Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156-1160 crossref(new window)

Kwon Y-I, Abe K, Endo M, et al (2013) DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol 13:62 crossref(new window)

Kwon YI, Abe K, Osakabe K, et al (2012) Overexpression of OsRecQl4 and/or OsExo1 Enhances DSB-Induced Homologous Recombination in Rice. Plant Cell Physiol 53:2142-2152 crossref(new window)

Lee KY, Lund P, Lowe K, Dunsmuir P (1990) Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell Online 2:415-425 crossref(new window)

Liang Z, Zhang K, Chen K, Gao C (2014) Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System. J Genet Genomics 41:63-68 crossref(new window)

Li J-F, Norville JE, Aach J, et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688-691 crossref(new window)

Li T, Liu B, Spalding MH, et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390-392 crossref(new window)

Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci 94:5525-5530 crossref(new window)

Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231-239 crossref(new window)

Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348-352 crossref(new window)

Moritoh S, Eun C-H, Ono A, et al (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71:85-98 crossref(new window)

Nekrasov V, Staskawicz B, Weigel D, et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691-693 crossref(new window)

Nimonkar AV, Ozsoy AZ, Genschel J, et al (2008) Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci 105:16906-16911 crossref(new window)

Nishizawa-Yokoi A, Endo M, Osakabe K, et al (2014) Precise marker excision system using an animal-derived piggyBac transposon in plants. Plant J 77:454-463 crossref(new window)

Nishizawa-Yokoi A, Nonaka S, Saika H, et al (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196:1048-1059 crossref(new window)

Ono A, Yamaguchi K, Fukada-Tanaka S, et al (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71:564-574 crossref(new window)

Ozawa K, Wakasa Y, Ogo Y, et al (2012) Development of an Efficient Agrobacterium-Mediated Gene Targeting System for Rice and Analysis of Rice Knockouts Lacking Granule- Bound Starch Synthase (Waxy) and ${\beta}1$,2-Xylosyltransferase. Plant Cell Physiol 53:755-761 crossref(new window)

Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021-4026

Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629-637 crossref(new window)

Ran FA, Hsu PD, Lin C-Y, et al (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 154:1380-1389 crossref(new window)

Remy S, Tesson L, Menoret S, et al (2010) Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 19:363-371 crossref(new window)

Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139-1150 crossref(new window)

Schuermann D, Molinier J, Fritsch O, Hohn B (2005) The dual nature of homologous recombination in plants. Trends Genet 21:172-181 crossref(new window)

Schwab R, Ossowski S, Riester M, et al (2006) Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell Online 18:1121-1133 crossref(new window)

Shan Q, Wang Y, Chen K, et al (2013a) Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs. Mol Plant sss162

Shan Q, Wang Y, Li J, et al (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686-688 crossref(new window)

Shukla VK, Doyon Y, Miller JC, et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437-441. 2 crossref(new window)

Singh SK, Roy S, Choudhury SR, Sengupta DN (2010) DNA repair and recombination in higher plants: insights from comparative genomics of arabidopsis and rice. BMC Genomics 11:443 crossref(new window)

Symington LS, Gautier J (2011) Double-Strand Break End Resection and Repair Pathway Choice. Annu Rev Genet 45:247-271 crossref(new window)

Tanaka S, Ishii C, Hatakeyama S, Inoue H (2010) High efficient gene targeting on the AGAMOUS gene in an Arabidopsis AtLIG4 mutant. Biochem Biophys Res Commun 396:289-293 crossref(new window)

Terada R, Johzuka-Hisatomi Y, Saitoh M, et al (2007) Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics. Plant Physiol 144:846-856 crossref(new window)

Terada R, Nagahara M, Furukawa K, et al (2010) Cre-loxP mediated marker elimination and gene reactivation at the waxy locus created in rice genome based on strong positive –negative selection. Plant Biotechnol 27:29-37 crossref(new window)

Terada R, Urawa H, Inagaki Y, et al (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030-1034 crossref(new window)

Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321-327 crossref(new window)

Townsend JA, Wright DA, Winfrey RJ, et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442-445 crossref(new window)

Voytas DF (2013) Plant Genome Engineering with Sequence- Specific Nucleases. Annu Rev Plant Biol 64:327-350 crossref(new window)

Wang Y, Yau Y-Y, Perkins-Balding D, Thomson JG (2010) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267-285

Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, et al (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Plant J 60:386-396 crossref(new window)

Zhang F, Maeder ML, Unger-Wallace E, et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107:12028-12033 crossref(new window)

Zhang Y, Zhang F, Li X, et al (2013) Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. Plant Physiol 161:20-27 crossref(new window)