JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Current status of sweetpotato genomics research
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Plant Biotechnology
  • Volume 42, Issue 3,  2015, pp.161-167
  • Publisher : The Korean Society of Plant Biotechnology
  • DOI : 10.5010/JPB.2015.42.3.161
 Title & Authors
Current status of sweetpotato genomics research
Yoon, Ung-Han; Jeong, Jae Cheol; Kwak, Sang-Soo; Yang, Jung-Wook; Kim, Tae-Ho; Lee, Hyeong-Un; Nam, Sang-Sik; Hahn, Jang-Ho;
  PDF(new window)
 Abstract
Sweetpotato [Ipomoea batatas (L.) Lam] grows well in harsh environmental conditions, and is cultivated as one of the top seven food crops in the world. Recently, sweetpotato is drawing interest from people as a healthy food because it is high in dietary fiber, vitamins, carotenoids and overall nutrition value. However, few studies have been conducted on sweetpotato genome sequencing in spite of its importance. This review is aimed at increasing the efficiency of sweetpotato genome sequencing research as well as establishing a base for gene utilization in order to control useful traits. Recently, animal and plant genome sequencing projects increased significantly. However, sweetpotato genome sequencing has not been performed due to polyploidy and heterogeneity problems in its genome. Meanwhile research on its transcriptome has been conducted actively. Recently, a draft of the diploid sweetpotato genome was reported in 2015 by Japanese researchers. In addition, the Korea-China-Japan Trilateral Research Association of Sweetpotato (TRAS) has conducted research on gene map construction and genome sequencing of the hexaploid sweetpotato Xushu 18 since 2014. The Bill & Melinda Gates Foundation launched the 'sweetpotato genomic sequencing to develop genomic tools for Sub-Sahara Africa breeding program'. The chloroplast genome sequence acquired during sweetpotato genome sequencing is used in evolutionary analyses. In this review, the trend of research in the sweetpotato genome sequencing was analyzed. Research trend analysis like this will provide researchers working toward sweetpotato productivity and nutrient improvement with information on the status of sweetpotato genome research. This will contribute to solving world food, energy and environmental problems.
 Keywords
Sweetpotato;Genoimcs;Transcripome;Molecular breeding;
 Language
Korean
 Cited by
 References
1.
Ahn YS, Chung MN, Jeang BC, Lee JS, Oh YH (2002a) A New Sweetpotato variety Resistance to Fusarium Wilt, "Singeonmi". Korean J. Breed. Sci. 34:381-382

2.
Ahn YS, Jeang BC, Chung MN, Lee JS, Oh YH (2002b) New Variety Developed : A New Purple-Flesh and High Anthocyanin Sweetpotato Variety, "Sinjami". Korean J. Breed. Sci. 34: 379-380

3.
Ahn YS, Chung MN, Lee JS, Jeang BC (2006) A New Sweetpotato variety for Food and Processing, "Juhwangmi". Korean J. Breed. Sci. 38:69-70

4.
Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815 crossref(new window)

5.
Austin DF, Huam Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the America. Taxon 45:3-38 crossref(new window)

6.
Bovell-Benjamin AC (2007) Sweetpotato: a review of its past, present, and future role in human nutrition. Adv Food Nutr Res 52:1-59 crossref(new window)

7.
Brassica rapa Genome Sequencing Project Consortium (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035-1039 crossref(new window)

8.
Cargill (2014) Food security: The challenge, 1-3

9.
Cervantes-Flores JC, Yencho GC, Kriegner A, Pecota KV, Faulk MA, Mwanga ROM, Sosinski BR (2008) Development of a genetic linkage map and identification of homologous linkage groups in sweetpotato using multiple-dose AFLP markers. Mol Breed 21:511-532 crossref(new window)

10.
Food and Agriculture Organization of the United Nations (FAO) (2015) The state of food insecurity in the world, 8-18

11.
Hirakawa H, Okada Y, Tabuchi H, Shirasawa K, Watanabe A, Tsuruoka H, Minami C, Nakayama S, Sasamoto S, Kohara M, Kishida Y, Fujishiro T, Kato M, Nanri K, Komaki A, Yoshinaga M, Takahata Y, Tanaka M, Tabata S, Isobe SN (2015) Survey of genome sequences in a wild sweetpotato, Ipomoea trifida (H.B.K.) G. Don. DNA Res 22:171-179 crossref(new window)

12.
International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711-716

13.
International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793-800 crossref(new window)

14.
International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788 crossref(new window)

15.
Jeong JC, Ji CY, Park SC, Lee HS, Kwak SS (2015) Comparative transcriptome analysis of sweetpotato and its land races in response to oxidative stress. Proceeding Book of Annual Academic Meeting of Korean Society for Plant Biotechnology (Korean Culture Training Institute, June 18-19, 2015). p59.

16.
Kim CY, Ahn YO, Kim SH, Kim YH, Lee HS, Catanach AS, Jacobs JME, Conner AJ, Kwak SS (2010) The sweetpotato IbMYB1 gene as a potential visible marker for sweetpotato intragenic vector system. Physiol Plantarum 139:229-240

17.
Kim MD, Ahn YO, Kim YH, Kim CY, Lee JJ, Jeong JC, Lee HS, Mok IJ, Kwak SS (2009) Strategies of development of environmentally firendly industrial sweetpotato on marginal lands by molecular breeding. J Plant Biotechnol 36:197-201 crossref(new window)

18.
Kim MY, Lee S, Van K, Kim TH, Jeong SC, Choi IY, Kim DS, Lee YS, Park D, Ma J, Kim WY, Kim BC, Park S, Lee KA, Kim DH, Kim KH, Shin JH, Jang YE, Kim KD, Liu WX, Chaisan T, Kang YJ, Lee YH, Kim KH, Moon JK, Schmutz J, Jackson SA, Bhak J, Lee SH (2010) Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA 107: 22032-22037 crossref(new window)

19.
Kim SH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013) Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiol Biochem 70:445-454 crossref(new window)

20.
Kriegner A, Cervantes JC, Burg K, Mwanga ROM, Zhang D (2003) A genetic linkage map of sweetpotato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Mol Breed 11:169-185 crossref(new window)

21.
Lee JS, Ahn YS, Chung MN, Kim HS, Jeong KH, Bang JK, Song YS, Shim HK, Han SK, Suh SJ (2010) A New Sweetpotato Cultivar for Use of Bioethanol 'Daeyumi'. Korean J. Breed. Sci. 42:674-678

22.
Li AX, Liu QC, Wang QM, Zhang LM, Zhai H, Liu SZ (2010) Establishment of molecular linkage maps using SRAP markers in sweetpotato. Acta Agron. Sin. 36:1286-1295

23.
Monden Y, Hara T, Okada Y, Jahana O, Kobayashi A, Tabuchi H, Onaga S, Tahara M (2015) Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing. Breed Sci 65:145-153 crossref(new window)

24.
Park SC, Kim SH, Park SY, Lee HU, Lee JS, Bae JY, Ahn MJ, Kim YH, Jeong JC, Lee HS, Kwak SS (2015a) Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Insgene in purple-fleshed sweetpotato cultivar. Plant Physiol Biochem 86:82-90 crossref(new window)

25.
Park SC, Kim YH, Kim SH, Jeong YJ, Kim CY, Lee JS, Bae JY, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2015b) Overexpression of the IbMYB1 gene in an orange-fleshed sweetpotato cultivar produces a dual-pigmented transgenic sweetpotato with improved antioxidant activity. Physiol Plantarum 153:525-537 crossref(new window)

26.
Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189-195 crossref(new window)

27.
Roullier C, Benoit L, McKey DB, Lebot V (2013) Historical collections reveal patterns of diffusion of sweetpotato in Oceania obscured by modern plant movements and recombination. Proc Natl Acad Sci USA 110:2205-2210 crossref(new window)

28.
Roullier C, Duputie A, Wennekes P, Benoit L, Fernandez Bringas VM, Rossel G, Tay D, McKey D, Lebot V (2013) Disentangling the origins of cultivated sweetpotato (Ipomoea batatas (L.) Lam.). PLoS One 8:e62707 crossref(new window)

29.
Schafleitner R, Tincopa LR, Palomino O, Rossel G, Robles RF, Alagon R, Rivera C, Quispe C, Rojas L, Pacheco JA, Solis J, Cerna D, Kim JY, Hou J, Simon R (2010) A sweetpotato gene index established by de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers. BMC Genomics 11:604 crossref(new window)

30.
Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ (2012) Digital gene expression analysis based on integrated de novo transcriptome assembly of sweetpotato [Ipomoea batatas (L.) Lam]. PLoS One 7:36234 crossref(new window)

31.
TRAS (2015) Sweetpotato genomic sequencing. TRAS Newsletter 1:3

32.
Ukoskit K and Thompson PG (1997) Autopolyploidy versus allopolyploidy and low-density randomly amplified polymorphic DNA linkage maps of sweetpotato. J Amer Soc Hort Sci 122:22-828

33.
Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 11:26 crossref(new window)

34.
Wang Z, Li J, Luo Z, Huang L, Chen X, Fang B, Li Y, Chen J, Zhang X (2011) Characterization and development of ESTderived SSR markers in cultivated sweetpotato (Ipomoea batatas). BMC Plant Biol 11:139 crossref(new window)

35.
Xie F, Burklew CE, Yang Y, Liu M, Xiao P, Zhang B, Qiu D (2012) De novo sequencing and a comprehensive analysis of purple sweetpotato (Impomoea batatas L.) transcriptome. Planta 236:101-113 crossref(new window)

36.
Yan L, Lai X, Li X, Wei C, Tan X, Zhang Y (2015) Analyses of the complete genome and gene expression of chloroplast of sweetpotato [Ipomoea batata]. PLoS One 10:e0124083 crossref(new window)

37.
Zhao N, Yu X, Jie Q, Li H, Li Hua, Hu J, Zhai H, He S, Liu Q (2013) A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato. Mol Breeding 32:807-820 crossref(new window)

38.
Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R (2009) An evaluation of cassava, sweetpotato and field corn as potential carbohydrtae sources for bioethanol production in Alabama and Maryland. Biomass Bioenerg 33:1503-1508 crossref(new window)