Advanced SearchSearch Tips
Current status and prospects of genomics and bioinformatics in grapes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Plant Biotechnology
  • Volume 42, Issue 4,  2015, pp.298-311
  • Publisher : The Korean Society of Plant Biotechnology
  • DOI : 10.5010/JPB.2015.42.4.298
 Title & Authors
Current status and prospects of genomics and bioinformatics in grapes
Hur, Youn Young; Jung, Sung Min; Yun, Hae Keun;
  PDF(new window)
Grape is one of the important fruit crops around the world, and exposed to disease and pests, and internal or environmental stresses in the vineyards. Breeding and cultivation of new varieties of high quality-grapes resistant to diseases and pests and tolerant to stresses are the most important steps in the grape production. However, conventional breeding has laborious and time-consuming procedures in maintaining and selecting seedlings in the fields. Development of molecular breeding technology through understanding of molecular mechanism of useful traits can be used as an alternative strategy to improve the efficiency of grape breeding program by cross hybridization in grape development programs. The completion of the grape genome sequencing project provided the way to discover the novel genes and to analyze their functions. Comparative genomics, transcriptomic analysis, and the genome-wide identification and analysis of useful genes as well as development of molecular marker for valuable traits could provide novel insights into fruit quality and the responses to diseases and stresses, and can be used as important information in molecular breeding programs for grape development.
Grape;Genome;Transcriptome;Molecular Markers;Genetic Map;Molecular Breeding;
 Cited by
영하의 저온에 노출된 'Campbell Early'와 'Muscat Bailey A' 포도나무 신초의 전사체 비교,김선애;윤해근;

Journal of Plant Biotechnology, 2016. vol.43. 2, pp.204-212 crossref(new window)
Transcriptional profiles of Rhizobium vitis-inoculated and salicylic acid-treated 'Tamnara' grapevines based on microarray analysis,;;

Journal of Plant Biotechnology, 2016. vol.43. 1, pp.37-48 crossref(new window)
Transcriptomic analysis of ‘Campbell Early’ and ‘Muscat Bailey A’ grapevine shoots exposed to freezing cold stress, Journal of Plant Biotechnology, 2016, 43, 2, 204  crossref(new windwow)
Transcriptional profiles of Rhizobium vitis-inoculated and salicylic acid-treated ‘Tamnara’ grapevines based on microarray analysis, Journal of Plant Biotechnology, 2016, 43, 1, 37  crossref(new windwow)
Adam-Blondon AF, Lahogue-Esnault F, Bouquet A, Boursiquot JM, This P (2001) Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars. Vitis 40:147-155

Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017-1027 crossref(new window)

Ahn SY, Kim SA, Jo SH, Yun HK (2014) De novo transcriptome analysis of Vitis flexuosa grapevine inoculated with Elsinoe ampelina. Plant Genet Resour-Charact Util 12: S130-S133 crossref(new window)

Azuma A, Udo Y, Sato A, Mitani N, Kono A, Ban Y, Yakushiji H, Koshita Y, Kobayashi S (2011) Haplotype composition at the color locus is a major genetic determinant of skin color variation in Vitis$\times$labruscana grapes. Theor Appl Genet 122:1427-1438 crossref(new window)

Barba P, Cadle-Davidson L, Galarneau E, Reisch B (2015) Vitis rupestris B38 confers isolate-specific quantitative resistance to penetration by Erysiphe nector. Phytopathology 105:1097-1103 crossref(new window)

Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, Hyma K, Reisch B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73-84 crossref(new window)

Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246-7255 crossref(new window)

Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, Cipriani G, Morgante M, Testolin R, Di Gaspero G (2009) Resistance to Plasmopara viticola in grapevine 'Bianca' is controlled by a major dominant gene causing localised necrosis at the infection site. Theor Appl Genet. 120:163-76 crossref(new window)

Berli F, D'Angelo J, Cavagnaro B, Bottini R, Wuilloud R, Silva MF (2008) Phenolic composition in grape (Vitis vinifera L. cv. Malbec) ripened with different solar UV-B radiation levels by capillary zone electrophoresis. J Agric Food Chem 56:2892-2898 crossref(new window)

Berli F, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro B, Bottini R (2009) Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ 33:1-10

Bert PF, Bordenave L, Donnart M, Hevin C, Ollat N, Decroocq S (2013) Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theor Appl Genet 126:451-473 crossref(new window)

Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663-1675 crossref(new window)

Bornman JF, Reuber S, Cen YP, Weissenbock G (1997) Ultraviolet radiation as a stress factor and the role of protective pigments, p. 157-168. In : PJ Lumsden (Ed.). Plants and UV-B: Responses to Environmental Change. Cambridge University Press, Cambridge

Bouquet A (1983) Contribution a l'etude de l'espece Muscadinia rotundifolia (Michx) Small et de ses hybrides avec Vitis vinifera L. Applications en selection. These Doct, Universite Bordeaux II, France

Bouquet A, Danglot Y (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis 35:35-42

Bouquet A. 1986. Introduction dans l'spece Vitis vinifera :L. d'un caracterebde resistance a l'oidium (Uncinula necator Schw. Burr.) issu de l'espece Muscadinia rotundifoloia (Michx) Small. Vignevini 13. Suppl 12:141-146

Brosche M, Strid A (2003) Molecular events following perception of ultraviolet-B radiation by plants. Physiol Plant 117:1-10 crossref(new window)

Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martinez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572-7585 crossref(new window)

Caprio JM, Quamme HA. 2002. Weather conditions associated with grape production in the Okanagan Valley of British Columbia and potential impact of climate change. Can J Plant Sci 82:755-763 crossref(new window)

Chaves MM, Santos TP, Souza CR, Ortuno MF, Rodrigues ML, Lopes CM, Maroco JP, Pereira JS (2007) Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann Appl Biol 150:237-252 crossref(new window)

Chen J, Wang N, Fang L-C, Liang Z-C, Li S-H, Wu B-H (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:28 crossref(new window)

Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P, Kovacs L, Morgante M, Testolin R, Gaspero GD (2009) The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC genetics 10:89

Coombe, B.G., McCarthy, M.G. (2000) Dynamics of grape berry growth and physiology of ripening. Austr J Grape Wine Res 6:131-135 crossref(new window)

Cramer GR (2010) Abiotic stress and plant responses from the whole vine to the genes. Austr J Grape Wine Res 16:86-93 crossref(new window)

Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, et al. (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111-134 crossref(new window)

Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163 crossref(new window)

Crane O, Halaly T, Pang X, Lavee S, Perl A, Vankova R, Or E. (2012) Cytokinin-induced VvTFL1A expression may be involved in the control of grapevine fruitfulness. 235:181-192 crossref(new window)

Dalbo MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2001) Marker-assisted selection for powdery mildew resistance in grapes. J Am Soc Hortic Sci 126:83-89

Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429 crossref(new window)

Di Gaspero G, Cipriani G, Adam-Blondon A-F, Testolin R (2007) Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers from R-gene candidates. Theor Appl Genet 114:1249-1263 crossref(new window)

Doligez A, Bouquet a, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780-795 crossref(new window)

Emanuelli F, Sordo M, Lorenzi S, Battilana J, Grando MS (2014) Development of user-friendly functional molecular markers for VvDXS gene conferring muscat flavor in grapevine. Mol Breeding 33:235-241 crossref(new window)

Emmanuelli F, Lorenzi S, Grzeskowiak , Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater J, Zyprian E, Moreira F, Grando M (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39 crossref(new window)

Espinoza C, Vega A, Medina C, Schlauch K, Cramer G, Arce-Johnson P (2007) Gene expression associated with compatible viral diseases in grapevine cultivars. Funct Integr Genomics 7:95-110 crossref(new window)

FAOSTAT (2014) Food and agricultural commodities production.

Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76:661-674 crossref(new window)

Figueiredo A, Fortes AM, Ferreira S, Sebastiana M, Choi YH, Sousa L, Acioli-Santos B, Pessoa F, Verpoorte R, Pais MS (2008) Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. J Exp Bot 59:3371-3381 crossref(new window)

Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L, Maltese F, Choi YH, Grimplet J, Martinez-Zapater JM, Verpoorte R, Pais MS (2011) Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol 11:149 crossref(new window)

Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol 133:1420-1428 crossref(new window)

Fuller MP, Telli G (1999) An investigation of the frost hardiness of grapevine (Vitis vinifera) during bud break. Annu Appl Biol 135:589-595 crossref(new window)

Gao M, Niu J, Zhao S, Jiao C, Xu W, Fei Z, Wang X (2012) Characterization of Erysiphe nector-responsive genes in Chinese wild Vitis quinquangularis. Intl J Mol Sci 13:11497-11519 crossref(new window)

Genova AD, Almeida AM, Munoz-Espinoza C, Vizoso P, Travisany D, Moraga C, Pinto M, Hinrichsen P, Orellana A, Maass A (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7 crossref(new window)

Guillaumie S, Fouquet R, Kappel C, Camps C, Terrier N, Moncomble D, Dunlevy J, Davies C, Boss P, Delrot S (2011) Transcriptional analysis of late ripening stages of grapevine berry. BMC Plant Biol 11:165 crossref(new window)

He N, Yaolan F, Shurong L (1990) Grape breeding for cold resistance in northeast China for 30 years. Proc. of 5th International Symposium on grape breeding. Vitis special issue pp. 329

Hemstad, P.R. and J.J. Luby (2000) Utilization of Vitis riparia for the development of new wine varieties with resistance to disease and extreme cold. Acta Hortic 528:487-490

Hoffmann S, Di Gaspero G, Kovacs L, Howard S, Kiss E, Galbacs Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine 'Kishmish vatkana' is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427-438 crossref(new window)

Howell GS (2001) Sustainable grape productivity and the growth-yield relationship: A review. Am J Enol Vitic 52:165-174

Hur YY, Choi YJ, Kim EJ, Yoon MS, Park YS, Jung SM, Noh JH, Park SJ, Ma KH, Park KS (2012) Analysis of genetic relationship of grape rootstock cultivars and wild Vitis species using RAPD and SSR markers. Kor J Breed Sci 44:19-28

Hur YY, Choi YJ, Roh JH, Kim SH, Shin YU, Lee HC, Lee HJ (2010) Changes of leaf water potential and CO2 assimilation in Korean native Vitis flexuosa during drought and subsequent recovery. Proc. of 28th International Horticultural Congress. Abstract II p.724

Hur YY, Jung CJ, Noh JH, Jung SM, Nam JC, Ma KH, Park KS (2014) Analysis of genetic relationship of seedless germplasm and validation assay of the P3_VvAGL11 marker linked to seedlessness in grapevines. Kor J Breed Sci 46:28-36 crossref(new window)

Hyma KE, Barba P, Wang M, Londo JP, Acharya CB, Mitchell SE, Sun Q, Reisch B, Cadle-Davidson L (2015) Heterozygous mapping strategy (HetMappS) for high resolution genotypingby-sequencing markers: a case study in grapevine. PLoS ONE 10(8):e0134880 crossref(new window)

Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463-467 crossref(new window)

Jansen MAK, Gaba V, Greenberg BM (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation. Trends Plant Sci 3:131-135 crossref(new window)

Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407-431 crossref(new window)

Jung CJ, Hur YY, Noh JH, Park KS, Lee HJ (2014) Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development. PLoS ONE 9(4):e95634 crossref(new window)

Kim ES, Chang EH, Hur YY, Kim TW, Jung SM (2015a) Anthocyanin contents and composition of VlmybA1-2 and VlmybA2 genes in Vitis labrusca hybrid grape cultivars and cross seedlings. Plant Omics J 8:472-478

Kim GH, Yun HK, Choi CS, Park JH, Jung YJ, Park KS, Dane F, Kang KK (2008) Identification of AFLP and RAPD markers linked to anthracnose resistance in grapes and their conversion to SCAR markers. Plant Breeding 127:418-423 crossref(new window)

Kim SA, Ahn SY, Han JH, Kim SH, Noh JH, Yun HK (2013) Differential expression screening of defense related genes in dormant buds of cold-treated grapevines. Plant Breed Biotech 1:14-23 crossref(new window)

Kim SA, Ahn SY, Han HH, Son IC, Yun HK (2015b) Expression of genes affecting skin coloration and sugar accumulation in grape berries at ripening stages under high temperatures. Adv Environ Res 87:25-31

Kim SA, Ahn SY, Yun HK (2016) Transcription analysis of grapevines exposed to low temperature. Hort Environ Biotechnol (accepted)

Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon induced mutations in grape skin color. Science 304:982 crossref(new window)

Kriedemann PE (1986) Photosynthesis in vine leaves as a function of light intensity, temperature, and leaf age. Vitis 7:213-220

Lahogue F, This P, Bouquet A (1998) Identification of a codominant SCAR marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950-959 crossref(new window)

Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, Wu BH, Fan PG, Wang LJ, Li SH (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:174 crossref(new window)

Lodhi MA, Daly MJ, Ye GN, Weeden NF, Reisch BI (1995) A molecular marker based linkage map of Vitis. Genome 38:786-794 crossref(new window)

Luby JJ, Mansfield AK, Hemstad PR, Beam BA (2003) Development and evaluation of cold hardy wine grape breeding selections and cultivars in the upper Midwest. AVERN Report

Luo F, Zhang F (1990) Grape breeding in China. Proc. 5th International Symposium on grape breeding. pp. 212-216

Luo HB, Ma L, Xi HF, Duan W, Li SH, Loescher W, Wang JF, Wang LJ (2011) Photosynthetic responses to heat treatments at different temperatures and following recovery in grapevine (Vitis amurensis L.) leaves. PLoS ONE 6:e23033 crossref(new window)

Ma YY, Zhang YL, Lu J (2010) Differential physio-biochemical responses to cold stress of cold-tolerant and non-tolerant grapes (Vitis L.) from China. J Agro Crop Sci 196:212-219

Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444: 139-158 crossref(new window)

Mandl K, Santiago JL, Hack R, Fardossi A, Regner F (2006) A genetic map of Welschriesling $\times$ Sirius for the identification of magnesium deficiency by QTL analysis. Euphytica 149:133-144 crossref(new window)

Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Gent 24:133-141 crossref(new window)

Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A (2009) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 9:81-96 crossref(new window)

Matus JT, Mason CE, Mane SM, Stephens M, Gilad Y (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83 crossref(new window)

Mejia N, Gebauer M, Munoz L, Hewstone N, Munoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless table grape progeny. Am J Enol Vitic 58:499-507

Mejia N, Soto B, Guerrero M, Casanueva X, Houel C, Miccono MA, Ramos R, Le Cunff L, Boursiquot JM, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57 crossref(new window)

Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, Butterlin G, Greif C (2003) Genetic Analysis of Downy mildew resistance derived from Muscadinia rotundifolia. Acta Hortic 603:451-456

Miller AJ, Matasci N, Schwaninger H, Aradhya MK, Prins B, Zhong GY, Simon C, Bucker ES, Myles S (2013) Vitis phylogenomics: Hybridization intensities from a SNP array outperform genotype calls. PLoS ONE 8:e78680 crossref(new window)

Moreira FM, Madini A, Marino R, Zulini L, Stefanin M et al. (2011) Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genet genomics 7:153-167 crossref(new window)

Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007): Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935-1945 crossref(new window)

Myles S, Boyko AR, Brown PJ, Grassi F, Owens CL, Aradhya M, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. PNAS 108:3530 crossref(new window)

Myles S, Chia JM, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D (2010) Rapid genomic characterization of the genus Vitis. PloS ONE 5:e8219 crossref(new window)

Nakagawa S (1991) Studies on the use of Japanese native Vitis species for grape production. Osaka. Pref Univ Fac Agr Sci Rep

Olmo HP (1976) Grapes, Vitis, Muscadinia (Viticeae). p.294-298. In: NW Simmonds (ed.). Evolution of crop plants. Longman, London

Pearson RC, Goheen AC (1998) Compendium of grape disease. APS Press, St. Paul

Pelsy F, Hocquigny S, Moncada X, Barbeau G, Forget D, Hinrichsen P, and Merdinoglu D (2010) An extensive study of the genetic diversity within seven French wine grape variety collections. Theor Appl Genet 120:1219-1231 crossref(new window)

Perrone I, Pagliarani C, Lovisolo C, Chitarra W, Roman F, Schubert A (2012) Recovery from water stress affects grape leaf petiole transcriptome. Planta 235:1383-1396 crossref(new window)

Pilati S, Perazzolli M, Malossini A, Cestaro A, Dematte L, Fontana P, Dal Ri A, Viola R, Velasco R, Moser C (2007) Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. BMC Genomics 8:428 crossref(new window)

Pontin MA, Piccoli PN, Francisco R, Botini R, Martinez-Zapater JM, Lijavetzky D (2010) Transcriptome changes in grapevines (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biol 21:224

Ramming DW, Gabler F, Smilanick JL, Margosan DA, Cadle-Davidson M, Barba P, Mahanil S, Frenkel O, Milgroom MG, Cadle-Davidson L (2011) A single dominant locus, Ren4, confers rapid non-race-specific resistance to grapevine powdery mildew. Phytopathology 101:502-508 crossref(new window)

Reisch BI, Owens CL, Cousins PS (2012) Grape, p. 225-262. In: ML Badebes, DH Byrne (eds.). Fruit breeding; Handbook of plant breeding (II), Springer, New York

Rex F, Fechter I, Hausmann L, Topfer R (2014) QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock 'Borner' (V. riparia Gm183 $\times$ V. cinerea Arnold). Theor Appl Genet 127:1667-1677 crossref(new window)

Riaz S, Dangl GS, Edwards KJ, Meredith CP (2004) A microsatellite marker based framewark linkage map of Vitis vinifera L. Theor Appl Genet 108:864-872 crossref(new window)

Riaz S, Tenscher AC, Ramming DW, Walker MA (2011) Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059-1073 crossref(new window)

Riaz S, Tenscher AC, Ramming DW, Walker MA. 2011. Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theor Appl Genet 122:1059-73 crossref(new window)

Rozema J, van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22-28 crossref(new window)

Schultz HR (2007) Abiotic stress ecophysiology and grape functional genomics. In Climate change and world viticulture. Cost Action 858 Workshop: Vineyard under environmental constraints: adaptations to climate change. Poland: University of Lodz

Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31: 279-292 crossref(new window)

Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13:691 crossref(new window)