JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Rediscovery of haploid breeding in the genomics era
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Plant Biotechnology
  • Volume 43, Issue 1,  2016, pp.12-20
  • Publisher : The Korean Society of Plant Biotechnology
  • DOI : 10.5010/JPB.2016.43.1.12
 Title & Authors
Rediscovery of haploid breeding in the genomics era
Lee, Seulki; Kim, Jung Sun; Kang, Sang-Ho; Sohn, Seong-Han; Won, So Youn;
  PDF(new window)
 Abstract
Advances in DNA sequencing technologies have contributed to revolutionary understanding of many fundamental biological processes. With unprecedented cost-effective and high-throughput sequencing, a single laboratory can afford to de novo sequence the whole genome for species of interest. In addition, population genetic studies have been remarkably accelerated by numerous molecular markers identified from unbiased genome-wide sequences of population samples. As sequencing technologies have evolved very rapidly, acquiring appropriate individual plants or populations is a major bottleneck in plant research considering the complex nature of plant genome, such as heterozygosity, repetitiveness, and polyploidy. This challenge could be overcome by the old but effective method known as haploid induction. Haploid plants containing half of their sporophytic chromosomes can be rapidly generated mainly by culturing gametophytic cells such as ovules or pollens. Subsequent chromosome doubling in haploid plants can generate stable doubled haploid (DH) with perfect homozygosity. Here, classical methodology to generate and identify haploid plants or DH are summarized. In addition, haploid induction by epigenetic regulation of centromeric histone is explained. Furthermore, the utilization of haploid plant in the genomics era is discussed in the aspect of genome sequencing project and population genetic studies.
 Keywords
Next-generation sequencing;Inbred;Tissue culture;Genome;Population;
 Language
Korean
 Cited by
 References
1.
Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung C-W, McCouch S, Thomson M, Mauleon R (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11 crossref(new window)

2.
Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the jimson weed, "Datura Stramonium". Science 55:646-647 crossref(new window)

3.
Consortium PGS (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189-195 crossref(new window)

4.
D'Hont A, Denoeud F, Aury J-M, Baurens F-C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213-217 crossref(new window)

5.
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181-1184 crossref(new window)

6.
Diao W-P, Jia Y-Y, Song H, Zhang X-Q, Lou Q-F, Chen J-F (2009) Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenerants using SSR markers. Scientia horticulturae 119:246-251 crossref(new window)

7.
Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldon T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546-549

8.
Ferrie AMR, Epp DJ, Keller WA (1995) Evaluation of Brassica rapa L. genotypes for microspore culture response and identification of a highly embryogenic line. Plant Cell Reports 14:580-584

9.
Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E (2012) The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences 109:11872-11877 crossref(new window)

10.
Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of datura. Nature 204:497-497

11.
Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of datura in vitro. Nature 212:97-98 crossref(new window)

12.
Han D-S, Niimi Y, Nakano M (1997) Regeneration of haploid plants from anther cultures of the Asiatic hybrid lily 'Connecticut King'. Plant cell, tissue and organ culture 47:153-158 crossref(new window)

13.
Hofinger BJ, Huynh OA, Jankowicz-Cieslak J, Müller A, Otto I, Kumlehn J, Till BJ (2013) Validation of doubled haploid plants by enzymatic mismatch cleavage. Plant methods 9:43 crossref(new window)

14.
Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant biotechnology journal 10:826-839 crossref(new window)

15.
Huang BE, Verbyla K, Verbyla A, Raghavan C, Singh V, Gaur P, Leung H, Varshney R, Cavanagh C (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999-1017 crossref(new window)

16.
Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P (2009) The genome of the cucumber, Cucumis sativus L. Nature genetics 41:1275-1281 crossref(new window)

17.
Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463-467 crossref(new window)

18.
Kasha K, Kao K (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874-876 crossref(new window)

19.
Kim K-M, Nam W-I, Kwon Y-S, Sohn J-K (2004) Development of doubled-haploid population and construction of genetic map using SSR markers in rice. Korean J Plant Biotechnol 31:179-184 crossref(new window)

20.
Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551 crossref(new window)

21.
Kristiansen K, Andersen S (1993) Effects of donor plant temperature, photoperiod, and age on anther culture response of Capsicum annuum L. Euphytica 67:105-109 crossref(new window)

22.
Lu CS, Sharma HC, Ohm HW (1991) Wheat anther culture: effect of genotype and environmental conditions. Plant Cell, Tissue and Organ Culture 24:233-236 crossref(new window)

23.
Mackay IJ, Bansept-Basler P, Barber T, Bentley AR, Cockram J, Gosman N, Greenland AJ, Horsnell R, Howells R, O'Sullivan DM (2014) An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3: $Genes{\mid}\;Genomes{\mid}\;Genetics$ 4:1603-1610

24.
Maheshwari S, Tan EH, West A, Franklin F, Comai L, Chan S (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS genetics 11:e1004970-e1004970 crossref(new window)

25.
Malik MR, Wang F, Dirpaul JM, Zhou N, Hammerlindl J, Keller W, Abrams SR, Ferrie AMR, Krochko JE (2008) Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis. Journal of Experimental Botany 59:2857-2873 crossref(new window)

26.
McKone MJ, Halpern SL (2003) The Evolution of Androgenesis. The American Naturalist 161:641-656 crossref(new window)

27.
Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991-996 crossref(new window)

28.
Mohammadi PP, Moieni A, Ebrahimi A, Javidfar F (2012) Doubled haploid plants following colchicine treatment of microsporederived embryos of oilseed rape (Brassica napus L.). Plant Cell, Tissue and Organ Culture 108:251-256 crossref(new window)

29.
Murovec J, Bohanec B (2011) Haploids and doubled haploids in plant breeding, p. 87-106. In: I.Y. Abdurakhmonov (ed.). Plant Breeding. InTech, Croatia.

30.
Murovec J, Bohanec B (2013) Haploid induction in Mimulus aurantiacus Curtis obtained by pollination with gamma irradiated pollen. Scientia Horticulturae 162:218-225 crossref(new window)

31.
Niizeki H, Oono K (1968) Induction of haploid rice plant from anther culture. Proceedings of the Japan Academy 44:554-557

32.
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579-584 crossref(new window)

33.
Park C-H, Lee M-S, Choi D-G, Cho J-H, Hyun S-W, Hwang C-J, So J-D, Choi B-J (1990) Effect of pollen stage and growth regulators on anther culture of Pulsatilla koreana Nakai. Korean J Plant Tissue Culture 17:239-248

34.
Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP, Le QH, Chauchard B, Verschave P, Causse M (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant biotechnology journal 13:565-577 crossref(new window)

35.
Pathirana R, Frew T, Hedderley D, Timmerman-Vaughan G, Morgan E (2011) Haploid and doubled haploid plants from developing male and female gametes of Gentiana triflora. Plant cell reports 30:1055-1065 crossref(new window)

36.
Qin X, Rotino GL (1995) Chloroplast number in guard cells as ploidy indicator of in vitro-grown androgenic pepper plantlets. Plant Cell, Tissue and Organ Culture 41:145-149 crossref(new window)

37.
Ravi M, Chan SW (2010) Haploid plants produced by centromeremediated genome elimination. Nature 464:615-618 crossref(new window)

38.
Ryu J-H, Doo H-S, Kwon T-H (1992) Induction of haploid plants by anther culture in sesame. Korean J Plant Tissue Culture 19:171-177

39.
San Noeum L (1976) Haploides d'Hordeum vulgare L. par culture in vitro d'ovaries non fecondes. Ann Amelior Plant 26:751-754

40.
Sannemann W, Huang BE, Mathew B, Leon J (2015) Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Molecular Breeding 35:1-16 crossref(new window)

41.
Seguí-Simarro J (2010) Androgenesis Revisited. Bot Rev 76:377-404 crossref(new window)

42.
Seymour DK, Filiault DL, Henry IM, Monson-Miller J, Ravi M, Pang A, Comai L, Chan SW, Maloof JN (2012) Rapid creation of Arabidopsis doubled haploid lines for quantitative trait locus mapping. Proceedings of the National Academy of Sciences 109:4227-4232 crossref(new window)

43.
Shrestha S, Kang W-H (2009) Effect of genotype of donor plants on the success of anther culture in sweet pepper (Capsicum annuum L.). Korean Journal of Plant Resources 22:506-512

44.
Smith R, Kamp M, Davies R (1981) Reduced plant size of haploid african violets. In Vitro 17:385-387 crossref(new window)

45.
Tang F, Tao Y, Zhao T, Wang G (2006) In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant cell, tissue and organ culture 84:233-237 crossref(new window)

46.
Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnology Advances 26:618-631 crossref(new window)

47.
Upadhyay A, Chacko A, Gandhimathi A, Ghosh P, Harini K, Joseph A, Joshi A, Karpe S, Kaushik S, Kuravadi N, Lingu C, Mahita J, Malarini R, Malhotra S, Malini M, Mathew O, Mutt E, Naika M, Nitish S, Pasha S, Raghavender U, Rajamani A, Shilpa S, Shingate P, Singh H, Sukhwal A, Sunitha M, Sumathi M, Ramaswamy S, Gowda M, Sowdhamini R (2015) Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biology 15:212 crossref(new window)

48.
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus $\times$ domestica Borkh.). Nature genetics 42:833-839 crossref(new window)

49.
Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature genetics 45:487-494 crossref(new window)

50.
Wang H, Dong B, Jiang J, Fang W, Guan Z, Liao Y, Chen S, Chen F (2014) Characterization of in vitro haploid and doubled haploid Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits and DNA methylation pattern. Frontiers in plant science 5:738

51.
Wedzony M, Forster BP, Zur I, Golemiec E, Szechynska-Hebda M, Dubas E, Gotebiowska G, Wedzony M (2009) Progress in doubled haploid technology in higher plants, p 1-33. In: A. Touraev, B. Forster, SM Jain (eds). Advances In Haploid Production In Higher Plants. Springer, Netherlands.

52.
Xiao L, Yang G, Zhang L, Yang X, Zhao S, Ji Z, Zhou Q, Hu M, Wang Y, Chen M (2015) The resurrection genome of Boea hygrometrica: A blueprint for survival of dehydration. Proceedings of the National Academy of Sciences 112:5833-5837 crossref(new window)

53.
Zeng X, Long H, Wang Z, Zhao S, Tang Y, Huang Z, Wang Y, Xu Q, Mao L, Deng G (2015) The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proceedings of the National Academy of Sciences 112:1095-1100 crossref(new window)

54.
Zhang H, Tan E, Suzuki Y, Hirose Y, Kinoshita S, Okano H, Kudoh J, Shimizu A, Saito K, Watabe S, Asakawa S (2014) Dramatic improvement in genome assembly achieved using doubled-haploid genomes. Scientific Reports 4:6780 crossref(new window)

55.
Zhang X, Wu Q, Li X, Zheng S, Wang S, Guo L, Zhang L, Custers JB (2011) Haploid plant production in Zantedeschia aethiopica 'Hong Gan' using anther culture. Scientia horticulturae 129:335-342 crossref(new window)