Advanced SearchSearch Tips
Phylogenetic analysis of 14 Korean Araliaceae species using chloroplast DNA barcode analysis
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Plant Biotechnology
  • Volume 43, Issue 1,  2016, pp.82-90
  • Publisher : The Korean Society of Plant Biotechnology
  • DOI : 10.5010/JPB.2016.43.1.82
 Title & Authors
Phylogenetic analysis of 14 Korean Araliaceae species using chloroplast DNA barcode analysis
Hwang, Hwan Su; Choi, Yong Eui;
  PDF(new window)
Most Araliaceae plant species distributed in Korea are economically important because of their high medicinal values. This study was conducted to develop barcode markers from sequence analysis of chloroplast DNA in 14 taxa of Araliaceae species grown in South Korea. Sequencing of seven chloroplast DNA regions was performed to establish the DNA barcode markers, as suggested by the Consortium for the Barcode of Life (CBOL). From the sequence analysis of chloroplast DNA, we identified specific sequences and nucleotides that allowed us to discriminate among each other 14 Korean Araliaceae species. The sequence in the region of psbA-trnH revealed the most frequent DNA indels and substitutions of all 7 regions studied. This psbA-trnH marker alone can discriminate among all 14 species. There are no differences between Korean and Chinese Panax ginseng in all seven sequenced chloroplast DNA regions. A phylogenetic tree constructed using the seven chloroplast DNA regions revealed that Tetrapanax papyriferus should be classified as an independent clade. The Aralia and Panax genera showed a close phylogenetic relationship. Five species in the Eleutherococcus genus were more closely related to Kalopanax septemlobus than to any Panax species.
DNA barcode;phylogenetic analysis;matK;psbA-trnH;psbK-psbI;rbcL;rpoC1;
 Cited by
Artyukova EV, Gontcharov AA, Kozyrenko MM, Reunova GD, Zhuravlev YN (2005) Phylogenetic relationships of the far eastern Araliaceae inferred from ITS sequences of nuclear rDNA. Russ J Genet 41:649-658 crossref(new window)

Bae E, Yook C, Oh O, Chang S, Nohara T, Kim D (2001) Metabolism of chiisanoside from Acanthopanax divaricatus var. albeofructus by human intestinal bacteria and its relation to some biological activities. Biol Pharm Bull 24:582-585 crossref(new window)

CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794-12797 crossref(new window)

Chandler GT, and Plunkett GM (2004) Evolution in Apiales:nuclear and chloroplast markers together in (almost) perfect harmony. Bot J Linn Soc 144:123-147 crossref(new window)

Davydov M, Krikorian AD (2000) Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: a closer look. J Ethnopharmacol 72:345-393 crossref(new window)

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791 crossref(new window)

Fujikawa T, Yamaguchi A, Morita I, Takeda H, Nishibe S (1996) Protective effects of Acanthopanax senticosus Harms from Hokkaido and its components on gastric ulcer in restrained cold water stressed rats. Biol Pharm Bull 19:1227-1230 crossref(new window)

Hahn D, Kasai R, Kim J, Taniyasu S, Tanaka O (1984) A new glycosyl ester of a 3, 4-seco-triterpene from korean medicinal plant, Acanthopanax chiisanensis (Araliaceae). Chem Pharm Bull 32:1244-1247 crossref(new window)

Hebert PDN, Cywinska A, Ball SL, Waard JRd (2003) Biological identifications through DNA barcodes. P. R. Soc. London, Series B 270:313-321 crossref(new window)

Jung S, Huh H, Hong J, Choi J, Chun H, Bang K, Huh M (2003) Genetic diversity and population structure of Kalopanax pictus (Araliaceae). J Plant Biol 46:255-262 crossref(new window)

Kim CH (2007) Araliaceae, The Genera of Vascular Plants of Korea, flora of Korea editorial committee (eds), 155, Academy publishing Co., Seoul, Korea. pp.725-732

Kim GR, Kim HR, Choi HS, Han JG, Kim SY, Kim CS (2015) Phylogenetic relationship of Araliaceae in Korea by seed morphological characteristics. J Wetlands Research 17:139-145 crossref(new window)

Kim NH, Yang DC, Eom AH (2004) A phylogenetic relationships of Araliaceae based on PCR-RAPD and ITS sequences. Korean J Plant Res 17:82-93

Kim WJ, Ji Y, Lee YM, Kang YM, Choi G, Moon BC (2015) Development of molecular markers for the authentication of Zanthoxyli Pericarpium by the analysis of rDNA-ITS DNA barcode regions. Kor J Herbology 30:41-47 crossref(new window)

Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the noncoding trnH-psbA spacer region. PLoS ONE 2:e508 crossref(new window)

Lahaye R1, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci U S A 105:2923-2928 crossref(new window)

Lee CH, Lee ST (1991) A palynotaxonomic study of the genus Fatsia Decne. et Planch. and its relatives (Araliaceae). Kor J Pla Tax 21:9-25 crossref(new window)

Lee CH, Wen J (2004) Phylogeny of Panax using chloroplast trnC-trnD intergenic region and the utility of trnC-trnD in interspecific studies of plants. Mol Phylogenet Evol 31:894-903 crossref(new window)

Lee GH, Jung JW, Ahn EM (2009) Antioxidant activity of isolated compounds from the shoot of Aralia elata Seem. Kor J Herbology 24:137-142

Lee J, Kim CS, Lee IY (2015a) Discrimination of Echinochloa colona (L.) Link from other Echinochloa species using DNA Barcode. Weed Turf Sci 4:225-229 crossref(new window)

Lee J, Kim CS, Lee IY (2015b) Molecular identification of Pooideae, Poaceae in Korea. Weed Turf Sci 4:18-25 crossref(new window)

Lowry II PP, Plunkett GM, Wen J (2004) Generic relationships in Araliaceae: looking into the crystal ball. S Afr J Bot 70:382-392 crossref(new window)

Ma SJ, Kuk JH, Ko BS, Park KH (1995) Isolation of 3,4-dihydroxybenzoic acid with antimicrobial activity from bark of Aralia elata. Agr Chem Biotechnol (1):46

Ma SJ, Kuk JH, Ko BS, Park KH (1996) Isolation and characterization of 4-hydroxycinnamic acid with antimicrobial activity from Aralia elata. Agr Chem Biotechnol 39:265-267

Nakai T (1939) Flora Sylvatica Koreana, Vol. X VI, Forestal experiment station, Government general of Chosen, Seoul, Korea, pp.1-48

Oh O, Chang S, Yook C, Yang K, Park S, Nohara T (2000) Two 3, 4-seco-lupane triterpenes from leaves of Acanthopanax divaricatus var. albeofructus. Chem Pharm Bull 48:879-881 crossref(new window)

Park WC, Lee ST (1989) A palynotaxonomic study of the Korean Araliaceae. Kor J Pla Tax 19:103-121 crossref(new window)

Plunkett G, Soltis D, Soltis P (1997) Clarification of the relationship between Apiaceae and Araliaceae based on matK and rbcL sequence data. Am J Bot 84:565-565 crossref(new window)

Plunkett GM, II PPL, Frodin DG, Wen J (2005) Phylogeny and geography of Schefflera: pervasive polyphyly in the largest genus of Araliaceae. Ann Mo Bot Gard 92:202-224

Plunkett GM, Wen J, Lowry II PP (2004) Intrafamilial classifications and characters in Araliaceae: Insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Plant Syst Evol 245:1-39

Plunkett GM, Soltis DE, Soltis PS (1996) Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences. Am J Bot 83:499-515 crossref(new window)

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739 crossref(new window)

Umeyama A, Shoji N, Takei M, Endo K, Arihara S (1992) Ciwujianosides D1 and C1: Powerful inhibitors of histamine release induced by anti-immunoglobulin E from rat peritoneal mast cells. J Pharm Sci 81:661-662 crossref(new window)

Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ (2001) The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot 26:144-167

Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the ginseng genus, Araliaceae): inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167-177 crossref(new window)