JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrical Properties of Polyetherimide(PEI)-MWCNT Composite Fibers Prepared by Electrospinning
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Textile Science and Engineering
  • Volume 52, Issue 5,  2015, pp.315-319
  • Publisher : The Korean Fiber Society
  • DOI : 10.12772/TSE.2015.52.315
 Title & Authors
Electrical Properties of Polyetherimide(PEI)-MWCNT Composite Fibers Prepared by Electrospinning
Kim, A-Rong; Kang, YoungAh; Park, Jong S.;
  PDF(new window)
 Abstract
We have prepared multi-walled carbon nanotube (MWCNT)-embedded conductive composite fibers using polyetherimide (PEI) as a polymer matrix (denoted as PEI-MWCNT). Uniform dispersion of the MWCNTs in dimethylacetamide was achieved after functionalization with quadruple hydrogen bonding sites, after which conductive composite fibers were produced via an electrospinning process. PEI-MWCNT fibers were prepared containing up to 3 wt% MWCNTs, and the resulting fibers were analyzed in order to determine the diameter and electrical conductivity of the fibers. Analysis of the fibers with scanning electron microscopy (SEM) revealed highly porous fiber structures, and that the MWCNTs were well-dispersed within the PEI matrix. Increasing the amount of MWCNTs in the fiber resulted in a decrease in the average fiber diameter, and the electrical conductivity was improved even when only a small amount of functionalized MWCNT was present.
 Keywords
polyetherimide;electrospinning;quadruple hydrogen bonding;composite fiber;electrical conductivity;
 Language
Korean
 Cited by
 References
1.
Echeverria, P. C. Su, S. L. Simon, and D. J. Plazek, "Physical Aging of a Polyetherimide: Creep and DSC Measurements", J. Polym. Sci. Part B: Polym. Phys., 1995, 33, 2457-2468.

2.
S. T. Amancio-Filho, J. Roeder, S. P. Nunes, J. F. dos Santos, and F. Beckmann, "Thermal Degradation of Polyetherimide Joined by Friction Riveting (FricRiveting). Part I: Influence of Rotation Speed", Polym. Degrad. Stabil., 2008, 93, 1529-1538. crossref(new window)

3.
J. T. Han, B. H. Jeong, S. H. Seo, K. C. Roh, S. Kim, S. Choi, J. S. Woo, H. Y. Kim, J. I. Jang, D. C. Shin, S. Jeong, H. J. Jeong, S. Y. Jeong, and G. W. Lee, "Dispersant-free Conducting Pastes for Flexible and Printed Nanocarbon Electrodes", Nat. Commun., 2013, 4, 2491.

4.
A. Laforgue and L. Robitaille, "Production of Conductive PEDOT Nanofibers by the Combination of Electrospinning and Vapor-Phase Polymerization", Macromolecules, 2010, 43, 4194-4200. crossref(new window)

5.
C. Q. Yin, J. Dong, Z. T. Li, Z. X. Zhang, and Q. H. Zhang, "Large-scale of Polyimide Fibers Containing Functionalized Multiwalled Carbon Nanotubes via Wet Spinning", Compos. Part B-Eng., 2014, 58, 430-437. crossref(new window)

6.
J. H. Zhu, H. B. Gu, Z. P. Luo, N. Haldolaarachige, D. P. Young, S. Y. Wei, and Z. H. Guo, "Carbon Nanostructure-Derived Polyaniline Metacomposites: Electrical, Dielectric, and Giant Magnetoresistive Properties", Langmuir, 2012, 28, 10246-10255. crossref(new window)

7.
R. Bhatia, C. S. S. Sangeeth, V. Prasad, and R. Menon, “Preparation and Characterization of Multiwall Carbon Nanotube/polypyrrole Coaxial Fibrils”, Physica B, 2011, 406, 1727-1732. crossref(new window)

8.
S. Kumar, T. Rath, R. N. Mahaling, C. S. Reddy, C. K. Das, K. N. Pandey, R. B. Srivastava, and S. B. Yadaw, "Study on Mechanical, Morphological and Electrical Properties of Carbon Nanofiber/polyetherimide Composites", Mat. Sci. Eng. B-Solid, 2007, 141, 61-70. crossref(new window)

9.
S. A. Hashemifard, A. F. Ismail, and T. Matsuura, "Effects of Montmorillonite Nano-clay Fillers on PEI Mixed Matrix Membrane for $CO_2$ Removal", Chem. Eng. J., 2011, 170, 316-325. crossref(new window)