JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effects of Polydopamine Treatment on the Interfacial Adhesion between EPDM Rubber Compound and Polyketone Fiber
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Textile Science and Engineering
  • Volume 52, Issue 6,  2015, pp.408-415
  • Publisher : The Korean Fiber Society
  • DOI : 10.12772/TSE.2015.52.408
 Title & Authors
Effects of Polydopamine Treatment on the Interfacial Adhesion between EPDM Rubber Compound and Polyketone Fiber
Jin, Da Young; Park, Do Un; Won, Jong Sung; Lee, Seung Goo;
  PDF(new window)
 Abstract
Polyketone fiber can be used for reinforcing mechanical rubber goods (MRG) such as hoses, tire cords, protective gloves, and ropes. However, the reactivity of the surface of polyketone fibers decreases with a high crystallization of the polyketone fiber. Hence, modification of the surface of polyketone fiber is essential for improving the surface functionality and the fiber-matrix interfacial adhesion. In this study, dopamine treatment has been employed for modifying the polyketone fiber surface in order to improve the adhesion between polyketone fiber and ethylene propylene diene monomer (EPDM) rubber. Chemical composition of the modified fiber surface was examined using energy dispersive spectroscopy (EDS), attenuated total reflectance-infrared spectroscopy ((ATR)-IR), and X-ray photoelectron spectroscopy (XPS). Adhesion properties with the rubber were examined by an H-adhesion test. Surface energy and surface morphology were evaluated using contact angle and scanning electron microscopic (SEM) measurements, respectively. A polydopamine layer was formed on the polyketone fiber surface after dopamine treatment, thereby changing the surface energy via the oxidation polymerization of dopamine.
 Keywords
polyketone fiber;dopamine;EPDM rubber;interfacial adhesion;
 Language
Korean
 Cited by
 References
1.
O. Ohsawa, K. H. Lee, B. S. Kim, S. Lee, and I. S. Kim, "Preparation and Characterization of Polyketone(PK) Fibrous Membrane via Electrospinning", Polymer, 2010, 51, 2007-2012. crossref(new window)

2.
P. Gupta, J. T. Schulte, J. E. Flood, and J. E. Spruiell, "Development of High-strength Fibers from Aliphatic Polyketones by Melt Spinning and Drawing", J. Appl. Polym. Sci., 2001, 82, 1794-1815. crossref(new window)

3.
G. Zui, G. Yu, M. Yama, and H. Masa, "Basic Study of PK Fiber Tire Cord", Tire Sci. Technol., 2007, 35, 317-325. crossref(new window)

4.
W. Wang, R. Li, M. Tian, L. Liu, H. Zou, X. Zhao, and L. Zhang, "Surface Silverized Meta-aramid Fibers Prepared by Bio-inspired Poly(dopamine) Functionalization", Am. Chem. Soc., 2013, 5, 2062-2069.

5.
S. B. Rho and M. A. Lim, "Determination of Contact Angle and Surface Free Energy of Polymer Powder by Wicking Method", J. Korean Inst. Chem. Eng., 1998, 36, 215-222.

6.
R. Sa, Z. Wei, Y. Yan, L. Wang, W. Wang, L. Zhang, and N. Ning, "Catechol and Epoxy Functionalized Ultrahigh Molecular Weight Polyethylene (UHMWPE) Fibers with Improved Surface Activity and Interfacial Adhesion", Compos. Sci. Technol., 2015, 113, 54-62. crossref(new window)

7.
Z. Xi, Y. Xu, L. Zhu, Y. Wang, and B. Zhu, "A Facile Method of Surface Modification for Hydrophobic Polymer Membranes Based on the Adhesive Behavior of Poly(DOPA) and Poly(dopamine)", J. Membr. Sci. 2009, 327, 244-253. crossref(new window)