Advanced SearchSearch Tips
Effects of Hexamethylene Diisocyanate as Coupling Agent on Mechanical Properties of Bamboo/PBS Composites
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Textile Science and Engineering
  • Volume 53, Issue 1,  2016, pp.36-44
  • Publisher : The Korean Fiber Society
  • DOI : 10.12772/TSE.2016.53.036
 Title & Authors
Effects of Hexamethylene Diisocyanate as Coupling Agent on Mechanical Properties of Bamboo/PBS Composites
Lee, Geum Mi; Oh, Ae Gyeong; An, Seung Kook;
  PDF(new window)
The purpose of this study is to improve the interfacial adhesion strength of bamboo/PBS composites by adding HDI (hexamethylene diisocyanate) as a coupling agent. Bamboo/PBS composites with HDI were fabricated by an internal mixer and a hot press machine. In addition, the effects of HDI as a coupling agent and various HDI contents on the mechanical properties of bamboo/PBS composites were investigated. Furthermore, the tensile properties, flexural properties, and Rockwell hardness of bamboo/PBS composites with HDI were evaluated. The obtained results showed that the mechanical properties of bamboo/PBS composites were improved with the addition of HDI. The morphology of fractured surfaces of bamboo/PBS composites was observed with SEM (scanning electron microscope), and the obtained SEM images showed evidence of improved interfacial adhesion between the bamboo fiber and PBS matrix. To analyze the composition change of bamboo/PBS composites, FT-IR (Fourier transform-infra red) spectroscopy was used. The FT-IR spectra of bamboo/PBS composites also showed positive effects of using HDI as a coupling agent. Finally, a comparison of various HDI contents, when all obtained results were combined, showed that bamboo/PBS composites with a HDI content of 1.5% had the most improved mechanical properties.
bamboo/PBS composites;interfacial adhesion;HDI (hexamethylene diisocyanate) coupling agent;mechanical properties;
 Cited by
Properties of grafted wood flour filled poly (lactic acid) composites by reactive extrusion, Journal of Adhesion Science and Technology, 2018, 32, 4, 429  crossref(new windwow)
C. S. Wu, "Physical Properties and Biodegradability of Maleated-polycaprolactone/starch Composite", Polym. Degrad. Stabil., 2003, 80, 127-134. crossref(new window)

W. J. Liu, L. T. Drzal, A. K. Mohanty, and M. Misra, "Influence of Processing Methods and Fiber Length on Physical Properties of Kenaf Fiber Reinforced Soy Based Biocomposites", Compos. Part B: Eng., 2007, 38, 352-359. crossref(new window)

M. S. Islam, K. L. Pickering, and N. J. Foreman, "Influence of Accelerated Ageing on the Physico-mechanical Properties of Alkali-treated Industrial Hemp Fibre Reinforced Poly(lactic acid) (PLA) Composites", Polym. Degrad. Stabil., 2010, 95, 59-65. crossref(new window)

M. N. Islam, M. R. Rahman, M. M. Haque, and M. M. Huque, "Physico-mechanical Properties of Chemically Treated Coir Reinforced Polypropylene Composites", Compos. Part A: Appl. S., 2010, 41, 192-198. crossref(new window)

E. Bodros, I. Pillin, N. Montrelay, and C. Baley, "Could Biopolymers Reinforced by Randomly Scattered Flax Fibre be Used in Structural Applications?", Compos. Sci. Technol., 2007, 67, 462-470. crossref(new window)

M. Jawaid, H. P. S. A. Khalil, and A. Abu Bakar, "Mechanical Performance of Oil Palm Empty Fruit Bunches/jute Fibres Reinforced Epoxy Hybrid Composites", Mat. Sci. Eng. AStruct., 2010, 527, 7944-7949. crossref(new window)

M. Okada, "Chemical Syntheses of Biodegradable Polymers", Prog. Polym. Sci., 2002, 27, 87-133. crossref(new window)

L. S. Liu, M. L. Fishman, K. B. Hicks, and C. K. Liu, "Biodegradable Composites from Sugar Beet Pulp and Poly(lactic acid)", J. Agr. Food. Chem., 2005, 53, 9017-9022. crossref(new window)

S. M. Lee, S. O. Han, D. Cho, W. H. Park, and S. G. Lee, "Influence of Chopped Fibre Length on the Mechanical and Thermal Properties of Silk Fibre-reinforced Poly(butylene succinate) Biocomposites", Polym. Polym. Compos., 2005, 13, 479-488.

A. K. Mohanty, M. A. Khan, and G. Hinrichsen, "Influence of Chemical Surface Modification on the Properties of Biodegradable Jute Fabrics-Polyester Amide Composites", Compos. Part A: Appl. S., 2000, 31, 143-150. crossref(new window)

A. Awal, S. B. Ghosh, and M. Sain, "Thermal Properties and Spectral Characterization of Wood Pulp Reinforced Biocomposite Fibers", J. Therm. Anal. Calorim., 2010, 99, 695-701. crossref(new window)

C. Nyambo, A. K. Mohanty, and M. Misra, "Effect of Maleated Compatibilizer on Performance of PLA/Wheat Straw-Based Green Composites", Macromol. Mater. Eng., 2011, 296, 710-718. crossref(new window)

B. A. Acha, M. M. Reboredo, and N. E. Marcovich, "Effect of Coupling Agents on the Thermal and Mechanical Properties of Polypropylene-jute Fabric Composites", Polym. Int., 2006, 55, 1104-1113. crossref(new window)

M. Farsi, "Wood-plastic Composites: Influence of Wood Flour Chemical Modification on the Mechanical Performance", J. Reinf. Plast. Comp., 2010, 29, 3587-3592. crossref(new window)

S. H. Lee and S. Q. Wang, "Biodegradable Polymers/bamboo Fiber Biocomposite with Bio-based Coupling Agent", Compos. Part A: Appl. S., 2006, 37, 80-91. crossref(new window)

L. F. Liu, J. Y. Yu, L. D. Cheng, and X. J. Yang, "Biodegradability of Poly(butylene succinate) (PBS) Composite Reinforced with Jute Fibre", Polym. Degrad. Stabil., 2009, 94, 90-94. crossref(new window)

H. S. Kim, B. H. Lee, S. Lee, H. J. Kim, and J. Dorgan, "Enhanced Interfacial Adhesion, Mechanical, and Thermal Properties of Natural Flour-filled Biodegradable Polymer Biocomposites", J. Therm. Anal. Calorim., 2011, 104, 331-338. crossref(new window)

G. Han, Y. Lei, Q. Wu, Y. Kojima, and S. Suzuki, "Bamboo-Fiber Filled High Density Polyethylene Composites: Effect of Coupling Treatment and Nanoclay", J. Polym. Environ., 2008, 16, 123-130. crossref(new window)

L. Bao, Y. W. Chen, W. H. Zhou, Y. Wu, and Y. L. Huang, "Bamboo Fibers @ Poly(ethylene glycol)-Reinforced Poly (butylene succinate) Biocomposites", J. Appl. Polym. Sci., 2011, 122, 2456-2466. crossref(new window)