JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Highly Sensitive, Flexible Pressure Sensors Based on Carbon Nanotube Microfibers Hybridized with Au Flowers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Highly Sensitive, Flexible Pressure Sensors Based on Carbon Nanotube Microfibers Hybridized with Au Flowers
Kim, So Young; Kim, Do Hwan;
  PDF(new window)
 Abstract
Pressure-sensitive electronic skin (e-skin) has gained importance in the fields of prosthetics, health monitoring, sensitive tactile information display, and robotics. In particular, many previous studies have reported flexible and highly sensitive pressure sensors. Among them, e-skin devices based on CNT microfibers show wearable and excellent multimodal (pressure, temperature, humidity, and presence of chemicals) sensing capabilities However, the low sensitivity of these devices at high pressures remains a critical issue. Here, we report on highly flexbile and sensitive e-skin devices prepared by carbon nanotube (CNT) microfibers hybridized with Au flowers, which were synthesized by electrochemical methods. First, we controlled the voltage and reaction time in order to optimize the surface morphology of the CNT microfibers. Next, we fabricated capacitive pressure sensors to elucidate the impact of Au flowers on the sensing capability of the CNT microfiber-based pressure sensors, especially in high pressure regimes. The sensors based on CNT microfibers with Au flowers showed fourfold higher sensitivity than did those without the Au flowers, due to the enhanced air traps between the Au flowers. Furthermore, this morphology of CNT microfibers with Au flowers demonstrated satisfactory repeatability and durability under high pressure.
 Keywords
electronic skin;CNT microfibers with Au flowers;pressure sensor;high sensitivity;
 Language
Korean
 Cited by
 References
1.
M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, and Z. Bao, "25th Anniversary Article: The Evolution of Electronic Skin (E‐Skin): A Brief History, Design Considerations, and Recent Progress", Adv. Mater., 2013, 25, 5997-6038. crossref(new window)

2.
D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T.-I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.-J. Chung, H. Keum, M. M. Cormick, P. Liu, Y.-W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, "Epidermal Electronics", Science, 2011, 333, 838-843. crossref(new window)

3.
K. Takei, T. Takahashi, J. C. Ho, H. Ko, A. G. Gillies, P. W. Leu, R. S. Fearing, and A. Javey, "Nanowire Active-matrix Circuitry for Low-voltage Macroscale Artificial Skin", Nat. Mater., 2011, 9, 821-826.

4.
T. Sekitani and T. Someya, “Stretchable Organic Integrated Circuits for Large-area Electronic Skin Surfaces”, Mrs Bulletin, 2012, 37, 236-245. crossref(new window)

5.
T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, "A Large-area, Flexible Pressure Sensor Matrix with Organic Field-effect Transistors for Artificial Skin Applications", Proc. Natl. Acad. Sci. USA, 2004, 101, 9966-9970. crossref(new window)

6.
S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, and R. Schwodiauer, "25th Anniversary Article: A Soft Future: from Robots and Sensor Skin to Energy Harvesters", Adv. Mater., 2014, 26, 149-162. crossref(new window)

7.
K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, “Organic Solvent Dispersions of Single-walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes”, J. Phys. Chem. B, 2000, 104, 8911-8915. crossref(new window)

8.
D.-H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 2008, 20, 4887-4892. crossref(new window)

9.
A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, and R. H. Baughman, "Super-tough Carbon-nanotube Fibres", Nature, 2003, 423, 703-703. crossref(new window)

10.
K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, and A. Windle, “High-performance Carbon Nanotube Fiber”, Science, 2007, 318, 1892-1895. crossref(new window)

11.
X.-H. Zhong, Y.-L. Li, Y.-K. Liu, X.-H. Qiao, Y. Feng, J. Ling, J. Jin, L. Zhu, F. Hou, and J.-Y. Li, "Continuous Multilayered Carbon Nanotube Yarns", Adv. Mater., 2010, 22, 692-696. crossref(new window)

12.
X. Zhang, Q. Li, T. G. Holesinger, P. N. Arendt, J. Huang, P. D. Kirven, T. G. Clapp, R. F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. E. Peterson, and Y. Zhu, "Ultrastrong, Stiff, and Lightweight Carbon-nanotube Fibers", Adv. Mater., 2007, 19, 4198. crossref(new window)

13.
S. Y. Kim, S. Park, H. W. Park, D. H. Park, Y. Jeong, and D. H. Kim, "Highly Sensitive and Multimodal All‐Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli", Adv. Mater., 2015, 27, 4178-4185. crossref(new window)

14.
S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, and Z. Bao, "Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers", Nat. Mater., 2010, 9, 859-864. crossref(new window)

15.
G. Schwartz, B. C. K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, and Z. Bao, "Flexible Polymer Transistors with High Pressure Sensitivity for Application in Electronic Skin and Health Monitoring", Nat. Comm., 2013, 4, 1859. crossref(new window)

16.
X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, "Silk‐Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals", Adv. Mater., 2014, 26, 1336-1342. crossref(new window)

17.
B. Zhu, Z. Niu, H. Wang, W. R. Leow, H. Wang, Y. Li, and X. Chen, “Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors”, Small, 2014, 10, 3625-3631. crossref(new window)

18.
C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, and Y. J. Jeong, "Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array", Adv. Mater., 2014, 26, 3451-3458. crossref(new window)

19.
Y. Jung, J. Song, W. Huh, D. Cho, and Y. Jeong, "Controlling the Crystalline Quality of Carbon Nanotubes with Processing Parameters from Chemical Vapor Deposition Synthesis", Chem. Eng. J., 2013, 228, 1050-1056. crossref(new window)

20.
J. Song, S. Yoon, S. Kim, D. Cho, and Y. Jeong, "Effects of Surfactant on Carbon Nanotube Assembly Synthesized by Direct Spinning", Chem. Eng. Sci., 2013, 104, 25-31. crossref(new window)

21.
J. Song, S. Kim, S. Yoon, D. Cho, and Y. Jeong, "Enhanced Spinanbility of Carbon Nanotube Fibers by Surfactant Addition", Fiber. Polym., 2014, 15, 762-766. crossref(new window)