JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Study of the Olefin Adhesion Layer Produced by Melt-blowing LDPE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Textile Science and Engineering
  • Volume 53, Issue 2,  2016, pp.68-74
  • Publisher : The Korean Fiber Society
  • DOI : 10.12772/TSE.2016.53.068
 Title & Authors
Study of the Olefin Adhesion Layer Produced by Melt-blowing LDPE
Kim, Chang Hun; Choi, Se Jin; Lee, Hyun Seok; Kim, Han Seong;
  PDF(new window)
 Abstract
This study investigated the interrelationships between some properties of low-density polyethylene (LDPE) web fibers produced by the melt-blown technique. Variations in the LDPE fiber`s diameter and uniformity were correlated against variations in throughput pressure, hot air pressure, and nozzle temperature. The bond strength of the LDPE web adhesion layer was found to be lower than that of LDPE film. However, the LDPE web adhesion layer`s air permeability was found to be significantly higher than - as much as 260 times higher - that of LDPE film. The results suggest that melt-blown LDPE web fibers are useful for producing multi-function products.
 Keywords
melt-blown;nonwoven;adhesion;air permeability;
 Language
Korean
 Cited by
 References
1.
S. B. Gwak and S. R. Lee, “The Technology of Lightweight Interior Parts in Automotive with Uni-material & Process”, Journal of the Korean Society of Automotive Engineers, 2011, 33, 39-47. crossref(new window)

2.
J. S. Shin, J. M. Park, Y. H. Lee, and H. D. Kim, “Preparation and Properties of Eco-friendly Waterborne Polyurethane-urea Primer for Thermoplastic Polypropylene Applied to Automobile Interiors”, Clean Technology, 2014, 20, 232-240. crossref(new window)

3.
V. A. Wente, "Superfine Thermoplastic Fibers", J. Ind. Eng. Chem., 1956, 48, 1342-1346. crossref(new window)

4.
D. Lohkamp and J. Prentice, "Nonwoven Mats of Thermoplastic Blends by Melt Blowing", US Patents, 3841953(1974).

5.
E. R. Hauser, "Web of Blended Microfibers and Crimped Bulking Fibers", US Patents, 4118531(1977).

6.
R. A. Anderson, R. C. Sokolowski, and K. W. Ostermeier, "Nonwoven Fabric and Method of Producing Same", US Patents, 4100324(1976).

7.
C. H. Lee, "Manufacturing Technology of Composite Spinning Melt-blown Nonwoven Fabric", Fiber Technol. Ind., 2008, 12, 81-87.

8.
C. J. Ellison, A. Phatak, D. W. Giles, C. W. Macosko, and F. S. Bates, “Melt Blown Nanofibers; Fiber Diameter Distributions and Onset of Fiber Breakup”, Polymer, 2007, 48, 3306-3316. crossref(new window)

9.
S. C. Chung, B. G. Ahn, and S. S. Im, "Effect of Melt Blown Processing Conditions on the Filtration Characteristics of Polypropylene (PP) Cartridge Filter", J. Korean Ind. Eng. Chem., 2002, 13, 613-618.

10.
H. S. Shin, L. Jin, and J. H. Yoo, “Effect of Manufacturing Conditions on the Properties of Oil-absorbable Melt Blown Nonwoven”, J. Korean Soc. Dyers Finishers, 2009, 21, 22-28.

11.
Y. Tian, H. Gao, J. Wang, X. Jin, and H. Wang, “Preparation of Hydroentangled CMC Composite Nonwoven Fabrics as High Performance Separator for Nickel Metal Hydride Battery”, Electrochimica Acta, 2015, 177, 321-326. crossref(new window)

12.
I. Krucinska, B. Surma, M. Chrzanowski, E. Skrzetuska, and M. Puchalski, "Application of Melt-blown Technology for the Manufacture of Temperature-Sensitive Nonwoven Fabrics Composed of Polymer Blends PP/PCL Loaded with Multiwall Carbon Nanotubes", J. Appl. Polym. Sci., 2013, 127, 869-878. crossref(new window)

13.
C. H. Lee, J. H. Lee, E. H. Kwon, K. J. Lee, E. J. Son, and S. H. Kim, "Performance of a Plat-Type Enthalpy Exchanger Made of Melt Blown Nonwovens(II)-Characteristics of Polypropylene and Nylon Melt Blown Nonwovens", Text. Sci. Eng., 2010, 47, 371-377.

14.
J. Zhao, C. Xiao, and N. Xu, "Evaluation of Polypropylene and Poly(butylmethacrylate-co-hydroxyethylmethacrylate) Nonwoven Material as Oil Absorbent", Environ. Sci. Pollut. Res., 2013, 20, 4137-4145. crossref(new window)

15.
S. Guo, Q. Ke, H. Wang, X. Jin, and Y. Li, "Poly(butylene terephthalate) Electrospun/Melt-blown Composite Mats for White Blood Cell Filtration", J. Appl. Polym. Sci., 2013, 128, 3652-3659. crossref(new window)

16.
H. W. No, M. J. Yun, K. S. Cho, and H. S. Kim, "Development of Fiber Orientation Distribution in 3-dimentional Nonwovens by Using Compressed Air", Text. Sci. Eng., 2010, 47, 326-332.

17.
S. Sinha-Ray, A. L. Yarin, and B. Pourdeyhimi, "Prediction of Angular and Mass Distribution in Meltblown Polymer Lay-down", Polymer, 2013, 54, 850-872.

18.
B. Pourdeyhimi and L. Kohel, "Area-Based Strategy for Determining Web Uniformity", Text. Res. J., 2002, 72, 1065-1072. crossref(new window)

19.
B. Pourdeyhimi, R. Dent, and H. Davis, "Measuring Fiber Orientation in Nonwovens, Part 3: Fourier Transform", Text. Res. J., 1997, 67, 143-151. crossref(new window)

20.
H. S. Kim, B. Pourdeyhimi, A. S. Abhiraman, and P. Desai, "Effect of Bonding Temperature on Load-Deformation Strctural Changes in Point-Bonded Nonwoven Fabrics", Text. Res. J., 2002, 72, 645-653. crossref(new window)