Advanced SearchSearch Tips
Cold Plasma Treatment Application to Improve Microbiological Safety of Infant Milk Powder and Onion Powder
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Cold Plasma Treatment Application to Improve Microbiological Safety of Infant Milk Powder and Onion Powder
Oh, Yeong Ji; Lee, Hanna; Kim, Jung Eun; Lee, Seok Hoon; Cho, Hyung Yong; Min, Sea Cheol;
  PDF(new window)
The potential of applying cold plasma (CP) treatments to improve microbiological safety of powdered products has been investigated using infant milk powder (IMP) and onion powder (OP). Among the different kinds of CP-forming gases, He- (99.8:0.2) gas mixture and He gas were most effective in reducing the number of Cronobacter sakazakii in IMP and Bacillus cereus spores in OP, respectively. C. sakazakii counts in IMP decreased by after CP treatment, and the extent of C. sakazakii inhibition increased in a time-dependent manner. CP treatment at 900 W for 20 min reduced the number of B. cereus spores by ~0.4 log spores/g. Treatments that integrated CP with microwave (MW-CP treatment) as well as those that integrated CP with heat and microwave (H-MW-CP treatment) resulted in a 90% reduction in the number of spores in OP. Thus, CP treatments demonstrated potential for decontaminating foodborne pathogens from powdered products, in combination with heat for improved effect.
non-thermal treatment;cold plasma;powdered products;Cronobacter sakazakii;Bacillus cereus;
 Cited by
유전체 방벽 방전 콜드 플라즈마 기술을 이용한 양파 분말 미생물 안전성 향상 및 품질 보존,원미연;최하영;이광식;민세철;

한국식품과학회지, 2016. vol.48. 5, pp.486-491 crossref(new window)
대기압 플라즈마가 선식의 품질 특성에 미치는 영향,김현주;우관식;조철훈;이석기;박혜영;심은영;원용재;이상복;오세관;

한국식품위생안전성학회지, 2016. vol.31. 5, pp.375-379 crossref(new window)
Moisture vaporization-combined helium dielectric barrier discharge-cold plasma treatment for microbial decontamination of onion flakes, Food Control, 2018, 84, 321  crossref(new windwow)
Effect of Atmospheric Pressure Plasma on the Quality of Commercially Available Sunsik, Journal of Food Hygiene and Safety, 2016, 31, 5, 375  crossref(new windwow)
Helium dielectric barrier discharge-cold plasma treatment for microbiological safety and preservation of onion powder, Korean Journal of Food Science and Technology, 2016, 48, 5, 486  crossref(new windwow)
Dungbuk Reigional Statistics Korea. Cultivation area for onion and garlic in Korea, 2015. Available from: Accessed Mar. 2, 2015.

Kim JG, Shim JY. Quality Characteristics of Wheat flour noodle added with onion powder. Food Eng. Prog. 10: 269-274 (2006)

Dziki D, Rozylo R, Gawlik-Dziki U, Swieca M. Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds. Trends Food Sci. Technol. 40: 48-61 (2014) crossref(new window)

Pezzutti A, Marucci PL, Sica MG, Matzkin MR, Croci CA. Gamma-ray sanitization of argentinean dehydrated garlic (Allium Sativum L.) and onion (Allium Cepa L.) products. Food Res. Int. 38: 797-802 (2005) crossref(new window)

Irkin R, Korukluoglu M. Control of some filamentous fungi and yeasts by dehydrated allium extracts. J. Verbr. Lebensm. 4: 3-6 (2009)

Hunter CJ, Petrosyan M, Ford HR, Prasadarao NV. Enterobacter Sakazakii: An emerging pathogen in infants and neonates. Surg. Infect. 9: 533-539 (2008) crossref(new window)

Healy B, Cooney S, O'Brien S, Iversen C, Whyte P, Nally J, Callanan JJ, Fanning S. Cronobacter (Enterobacter Sakazakii): An opportunistic foodborne pathogen. Foodborne Pathog. Dis. 7: 339-350 (2010) crossref(new window)

Anto A, Bv K, Gc J, Hebbar HU. Recent developments in superheated steam processing of foods-A review. Crit. Rev. Food Sci. Nutr. published on-line (2014)

Tateo F, Bononi M. Determination of ethylene chlorohydrin as marker of spices fumigation with ethylene oxide. J. Food Compos. Anal. 19: 83-87 (2006) crossref(new window)

Farkas J. Radiation decontamination of spices, herbs, condiments and other dried food ingredients. pp. 291-312. In: Food irradiation: Principles and Applications. Molins RA (ed). John Wiles & Sons, New York, NY, USA (2001)

Cheon HL, Shin JY, Park KH, Chung MS, Kang DH. Inactivation of foodborne pathogens in powdered red pepper (Capsicum annuum L.) using combined UV-C irradiation and mild heat treatment. Food Control 50: 441-445 (2015) crossref(new window)

Aydin A, Boston K. Microbial decontamination of powdered black pepper (Piper nigrum L.) by using microwave. J. Food Sci. Technol. 43: 575-578 (2006)

Tsujimoto H, Huang CC, Kinoshita N, Inoue Y, Eitoku H, Sekiguchi I. Ultra-high pressure sterilization of powdery food stuff-a new application of a roller compactor. Powder Technol. 146: 214-222 (2004) crossref(new window)

Lee SB, Uhm BH, Yoon WB. Effect of high pressure processing on the rancidity of yeonhaeju soybean (bazaz) powder during storage. Food Eng. Prog. 15: 209-213 (2011)

Kim SY, Sagong HG, Choi SH, Ryu S, Kang DH. Radio-frequency heating to inactivate Salmonella typhimurium and Escherichia coli O157: H7 on black and red pepper spice. Int. J. Food Microbiol. 153: 171-175 (2012) crossref(new window)

Taechapairoj C, Dhuchakallaya I, Soponronnarit S, Wetchacama S, Prachayawarakorn S. Superheated steam fluidised bed paddy drying. J. Food Eng. 58: 67-73 (2003) crossref(new window)

Lee HN, Kim JE, Chung MS, Min SC. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol. 51: 74-80 (2015) crossref(new window)

Kim JE, Lee DU, Min SC. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 38: 128-136 (2014) crossref(new window)

Niemira BA. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 3: 125-142 (2012) crossref(new window)

Finley N, Fields ML. Heat activation and heat-induced dormancy of Bacillus stearothermophilus spores. Appl. Environ. Microb. 10: 231-236 (1962)

Song AY, Oh YA, Oh SJ, Min SC. Cold plasma treatment effects on the physicochemical and biodegradable properties of a corn biomass-containing polyester film. Korean J. Food Sci. Technol. 47: 224-232 (2015) crossref(new window)

Sun P, Sun Y, Wu H, Zhu W, Lopez JL, Liu W, Zhang J, Li R, Fang J. Atmospheric pressure cold plasma as an antifungal therapy. Appl. Phys. Lett. 98: 021501 (2011) crossref(new window)

Chen W, Huang J, Du N, Liu XD, Wang XQ, Lv GH, Zhang GP, Guo LH, Yang SZ. Treatment of Enterococcus faecalis bacteria by a helium atmospheric cold plasma brush with oxygen addition. J. Appl. Phys. 112: 013304 (2012) crossref(new window)

Nair M, Kumar M, Joy J, Venkitanarayanan KS. Inactivation of Enterobacter sakazakii in reconstituted infant formula by monocaprylin. J. Food Protect. 67: 2815-2819 (2004)

Joshi DK, Fleischman GJ, Keller S, Narayanan K, Anderson NM. Non-thermal decontamination of a model dry particle food system. In: Abstracts: IFT Annual Meeting. July 17-20, McCormick Place South, Chicago, IL, USA. Institute of Food Technologists, Chicago, IL, USA (2010)

Arku B, Fanning S, Jordan K. Flow cytometry to assess biochemical pathways in heat-stressed Cronobacter spp. (formerly Enterobacter Sakazakii). J. Appl. Microbiol. 111: 616-624 (2011) crossref(new window)

Arroyo C, Cebrian G, Pagan R, Condon S. Inactivation of Cronobacter sakazakii by manothermosonication in buffer and milk. Int. J. Food Microbiol. 151: 21-28 (2011) crossref(new window)

Alderton G, Ito KA, Chen JK. Chemical manipulation of the heat resistance of Clostridium botulinum spores. Appl. Environ. Microb. 31: 492-498 (1976)

Tomida M, Suwa N, Machida H, Nishimura A, Makino S. Inhibition of germination of Bacillus stearothermophilus spores by sucrose monoalkylates and other surfactants. Jpn. Soc. Food Sci. Technol. 38: 1044-1049 (1991) crossref(new window)

Leuschner RGK, Lillford PJ. Effects of temperature and heat activation on germination of individual spores of Bacillus subtilis. Lett. Appl. Microbiol. 29: 228-232 (1999) crossref(new window)