Advanced SearchSearch Tips
Inhibitory Effects of Apple Peel Extract on Inflammatory Enzymes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Inhibitory Effects of Apple Peel Extract on Inflammatory Enzymes
Kim, Ilrang;
  PDF(new window)
The purpose of this study was to investigate the biological benefits of apple peel. The antioxidant and anti-inflammatory activities of a 70% ethanol extract of apple peel were examined. The total phenolic compound and flavonoid contents of apple peel were gallic acid equivalent/g of fresh weight and catechin equivalent/g of fresh weight, respectively. Antioxidant activity was evaluated by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The DPPH radical scavenging activity of apple peel was , and at concentrations of 0.1, 0.5 and 1.0 mg/mL, respectively (p<0.05). The anti-inflammatory effect was investigated by measuring the inhibition of inflammatory enzymes. Apple peel significantly inhibited secretory phospholipase, cyclooxygenase-1, cyclooxygenase-2, and lipoxygenase activity by up to , , and , respectively (p<0.05). Taken together, these findings suggest that apple peel may act as an antioxidant by radical scavenging and may possess potential anti-inflammatory properties for suppressing the activity of inflammatory enzymes. These results also suggest that apple peel can be utilized as a health functional food ingredient possessing antioxidant and anti-inflammatory activities.
apple peel;anti-inflammatory;lipoxygenase;cyclooxygenase;secretory phospholipase ;
 Cited by
사과박 첨가가 쿠키 품질 특성에 미치는 영향,오철환;강창수;

한국조리학회지, 2016. vol.22. 8, pp.89-98 crossref(new window)
옥수수수염, 율무, 표고버섯 그리고 사과껍질을 함유한 빵의 항산화 및 3T3-L1 지방 전구세포 분화 억제 활성,이창원;박용일;김수현;임희경;정미자;

한국식품영양과학회지, 2016. vol.45. 5, pp.651-663 crossref(new window)
Effects of Apple Pomace on Cookie Quality, Culinary Science & Hospitality Research, 2016, 22, 8, 89  crossref(new windwow)
Antioxidant and Anti-Adipogenic Activities of Bread Containing Corn Silk, Job's Tears, Lentinus edodes, and Apple Peel in 3T3-L1 Preadipocytes, Journal of the Korean Society of Food Science and Nutrition, 2016, 45, 5, 651  crossref(new windwow)
Boyer J, Liu RH. Apple phytochemicals and their health benefits. Nutr. J. 3: 5-15 (2004) crossref(new window)

Vinson JA, Su X, Zubic L, Bose P. Phenol antioxidant quantity and quality in foods: fruits. J. Agr. Food Chem. 49: 5315-5321 (2001) crossref(new window)

Wolfe K, Wu X, Liu RH. Antioxidant activity of apple peels. J. Agr. Food Chem. 51: 609-614 (2003) crossref(new window)

Henriquez C, Almonacid S, Chiffelle I, Valenzuela T, Araya M, Cabezas L, Simpson R, Speisky H. Determination of antioxidant capacity, total phenolic content and mineral composition of different fruit tissue of five apple cultivars grown in Chile. Chil. J. Agr. Res. 70: 523-536 (2010) crossref(new window)

Kubola J, Siriamornpun S. Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of thai gac (Momordica cochinchinensis Spreng). Food Chem. 127: 1138-1145 (2011) crossref(new window)

Rupasinghe HPV. Using change for success: Fruit-based bio-product research at the Nova Scotia Agricultural College. Annual Report 2003 of the Nova Scotia Fruit Growers's Assn. Nova Scotia, Canada. pp. 66-69 (2003)

Denis MC, Furtos A, Dudonne S, Montoudis A, Garofalo C, Desjardins Y, Delvin E, Levy E. Apple peel polyphenols and their beneficial actions on oxidative stress and inflammation. Plos One 8: e53725 (2013) crossref(new window)

Jensen GS, Attridge VL, Benson KF, Beaman JL, Carter SG, Ager D. Consumption of dried apple peel powder increases joint function and range of motion. J. Med. Food 17: 1204-1213 (2014) crossref(new window)

Mueller D, Triebel S, Rudakovski O, Richling E. Influence of triterpenoids present in apple peel on inflammatory gene expression associated with inflammatory bowel disease (IBD). Food Chem. 139: 339-346 (2013) crossref(new window)

Kim HP, Mani I, Iversen L, Ziboh VA. Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostag. Leukotr. Ess. 58: 17-24 (1998) crossref(new window)

Lee KM, Hwang MK, Lee DE, Lee KW, Lee HJ. Protective effect of quercetin against arsenite-induced COX-2 expression by targeting PI3K in rat liver epithelial cells. J. Agr. Food Chem. 58: 5815-5820 (2010) crossref(new window)

Chuang CC, Martinez K, Xie G, Kennedy A, Bumrungpert A, Overman A, Jia W, Mclntosh MK. Quercetin is equally or more effective than resveratrol in attenuating tumor necrosis factor-${\alpha}$-mediated inflammation and insulin resistance in primary human adipocytes. Am. J. Clin. Nutr. 92: 1511-1521 (2010) crossref(new window)

Ortega MG, Saragusti AC, Cabrera JL, Chiabrando GA. Quercetin tetraacetyl derivative inhibits LPS-induced nitric oxide synthase (iNOS) expression in J774A.1 cells. Arch. Biochem. Biophys. 498: 105-110 (2010) crossref(new window)

Funk CD. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 294: 1871-1875 (2001) crossref(new window)

Escarpa A, Gonzalez MC. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chromatogr. A 823: 331-337 (1998) crossref(new window)

Lee MY, Yoo MS, Whang YJ, Jin YJ, Hong MH, Pyo YH. Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels. Korean J. Food Sci .Technol. 44: 540-544 (2012) crossref(new window)

Chang MS, An SJ, Jeong MC, Kim DM, Kim GH. Effects of antioxidative activities and antibrowning of extracts from onion, apple and mandarin orange peel as natural antibrowning agents. Korean J. Food Nutr. 24: 406-413 (2011) crossref(new window)

Choi CI, Yoo SY, Chung MS. Efficient flavonoid extraction from apple peel by subcritical water and estimation of antioxidant activity. Korean J. Food Nutr. 24: 458-463 (2011) crossref(new window)

Verheij HM, Slotboom AJ, de Haas GH. Structure and function of phospholipase A2. Rev. Physiol. Biochem. Pharmacol. 91: 91-203 (1981)

Charlier C, Michaux C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem. 38: 645-659 (2003) crossref(new window)

Piomelli D, Greengard P. Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling. Trends Pharmacol. Sci. 11: 367-373 (1990) crossref(new window)

Henderson WR Jr. Role of leukotrienes in asthma. Ann. Allergy 72: 272-278 (1994)

Martel-Pelletier J, Lajeunesse D, Reboul P, Pelletier JP. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and nonselective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis. 62: 501-509 (2007)

Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 76: 560-568 (2002)

Shaheen SO, Sterne JAC, Thompson RL, Songhurst CE, Margetts BM, Burney PGJ. Dietary antioxidants and asthma in adults: Population-based case-control study. Am. J. Resp. Crit. Care 164: 1823-1828 (2001) crossref(new window)