JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Source, Biosynthesis, Biological Activities and Pharmacokinetics of Oxyresveratrol
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Source, Biosynthesis, Biological Activities and Pharmacokinetics of Oxyresveratrol
Lim, Young-Hee; Kim, Ki-Hyun; Kim, Jeong-Keun;
  PDF(new window)
 Abstract
Oxyresveratrol (trans-2,3`,4,5`-tetrahydroxystilbene) has been receiving increasing attention because of its astonishing biological activities, including antihyperlipidemic, neuroprotection, antidiabetic, anticancer, antiinflammation, immunomodulation, antiaging, and antioxidant activities. Oxyresveratrol is a stilbenoid, a type of natural phenol and a phytoalexin produced in the roots, stems, leaves, and fruits of several plants. It was first isolated from the heartwood of Artocarpus lakoocha, and has also been found in various plants, including Smilax china, Morus alba, Varatrum nigrum, Scirpus maritinus, and Maclura pomifera. Oxyresveratrol, an aglycone of mulberroside A, has been produced by microbial biotransformation or enzymatic hydrolysis of a glycosylated stilbene mulberroside A, which is one of the major compounds of the roots of M. alba. Oxyresveratrol shows less cytotoxicity, better antioxidant activity and polarity, and higher cell permeability and bioavailability than resveratrol (trans-3,5,4`-trihydroxystilbene), a well-known antioxidant, suggesting that oxyresveratrol might be a potential candidate for use in health functional food and medicine. This review focuses on the plant sources, chemical characteristics, analysis, biosynthesis, and biological activities of oxyresveratrol as well as describes the perspectives on further exploration of oxyresveratrol.
 Keywords
oxyresveratrol;stilbenoid;biosynthesis;biological activity;phamacokinetics;
 Language
Korean
 Cited by
1.
상지추출물의 단회/반복투여 독성 및 복귀돌연변이능 평가,한태원;엄민영;임영희;김정근;김인호;

한국식품영양과학회지, 2016. vol.45. 10, pp.1406-1413 crossref(new window)
1.
The inclusion complex of oxyresveratrol in modified cyclodextrins: A thermodynamic, structural, physicochemical, fluorescent and computational study, Food Chemistry, 2017, 232, 177  crossref(new windwow)
2.
Single- and Repeated-Dose Oral Toxicity in Rats and Bacterial Reverse Mutation Test of Morus alba L. Extracts, Journal of the Korean Society of Food Science and Nutrition, 2016, 45, 10, 1406  crossref(new windwow)
 References
1.
Mongolsuk S, Robertson A, Towers R. 429. 2,4,3',5'-Tetrahydroxystilbene from Artocarpus lakoocha. J. Chem. Soc. 2231-2233 (1957)

2.
Ayinampudi S, Wang YH, Avula B, Smillie TJ, Khan I. Quantitative analysis of oxyresveratrol in different plant parts of Morus species and related genera by HPTLC and HPLC. JPC-J. Planar. Chromatogr. 24: 129-129 (2011)

3.
Shao B, Guo HZ, Cui YJ, Liu AH, Yu HI, Guo H, Xu M, Guo DA. Simultaneous determination of six major stilbenes and flavonoids in Smilax china by high performance liquid chromatography. J. Pharmaceut. Biomed. 44: 737-742 (2007) crossref(new window)

4.
Djapic N, Djarmati Z, Filip S, Jankov RM. A stilbene from the heartwood of Maclura pomifera. J. Serb. Chem. Soc. 68: 235-237 (2003) crossref(new window)

5.
Hanawa F, Tahara S, Mizutani J. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride. Phytochemistry 31: 3005-3007 (1992) crossref(new window)

6.
Kim JK, Kim MJ, Cho SG, Kim MK, Kim SW, Lim YH. Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition. J. Ind. Microbiol. Biot. 37: 631-637 (2010) crossref(new window)

7.
Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TFW. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: Effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9: 64-76 (2003) crossref(new window)

8.
Jo SP, Kim JK, Lim YH. Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food Chem. Toxicol. 65: 213-218 (2014) crossref(new window)

9.
Park KT, Kim JK, Lim YH. Deglycosylation of stilbene glucoside compounds improves inhibition of 3-hydroxy-3-methylglutaryl coenzyme a reductase and squalene synthase activities. Food Sci. Biotechnol. 23: 647-651 (2014) crossref(new window)

10.
He H, Lu YH. Comparison of inhibitory activities and mechanisms of five mulberry plant bioactive components against α-glucosidase. J. Agr. Food Chem. 61: 81108119 (2013)

11.
Wu LS, Wang XJ, Wang H, Yang HW, Jia AQ, Ding Q. Cytotoxic polyphenols against breast tumor cell in Smilax china L. J. Ethnopharmacol. 130: 460-464 (2010) crossref(new window)

12.
Chillemi R, Sciuto S, Spatafora C, Tringali C. Anti-tumor properties of stilbene-based resveratrol analogues: Recent results. Nat. Prod. Commun. 2: 499-513 (2007)

13.
Chung KO, Kim BY, Lee MH, Kim YR, Chung HY, Park JH, Moon JO. In vitro and in vivo anti-inflammatory effect of oxyresveratrol from Morus alba L. J. Pharm. Pharmacol. 55: 1695-1700 (2003) crossref(new window)

14.
Likhitwitayawuid K, Sritularak B, Benchanak K, Lipipun V, Mathew J, Schinazi RF. Phenolics with antiviral activity from Millettia erythrocalyx and Artocarpus lakoocha. Nat. Prod. Res. 19: 177-182 (2005) crossref(new window)

15.
Andrabi SA, Spina MG, Lorenz P, Ebmeyer U, Wolf G, Horn TFW. Oxyresveratrol (trans-2,3',4,5'-tetrahydroxystilbene) is neuroprotective and inhibits the apoptotic cell death in transient cerebral ischemia. Brain Res. 1017: 98-107 (2004) crossref(new window)

16.
Kim JK, Park KT, Lee HS, Kim MJ, Lim YH. Evaluation of the inhibition of mushroom tyrosinase and cellular tyrosinase activities of oxyresveratrol: Comparison with mulberroside A. J. Enzym. Inhib. Med. Ch. 27: 495-503 (2012) crossref(new window)

17.
Park KT, Kim JK, Hwang DH, Yoo YM, Lim YH. Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation. Food Chem. Toxicol. 49: 30383045 (2011)

18.
Chatsumpun M, Chuanasa T, Sritularak B, Likhitwitayawuid K. Oxyresveratrol protects against DNA damage induced by photosensitized riboflavin. Nat. Prod. Commun. 6: 41-44 (2011)

19.
Zhang Z, Jin J, Shi L. Protective function of cis-mulberroside A and oxyresveratrol from Ramulus mori against ethanol-induced hepatic damage. Environ. Toxicol. Phar. 26: 325-330 (2008) crossref(new window)

20.
Powell RG, Bajaj R, McLaughlin JL. Bioactive stilbenes of Scirpus maritimus. J. Nat. Prod. 50: 293-296 (1987) crossref(new window)

21.
Likhitwitayawuid K, Chaiwiriya S, Sritularak B, Lipipun V. Antiherpetic flavones from the heartwood of Artocarpus gomezianus. Chem. Biodivers. 3: 1138-1143 (2006) crossref(new window)

22.
Xu L, Liu C, Xiang W, Chen H, Qin X, Huang X. Advances in the study of oxyresveratrol. Int. J. Pharmacol. 10: 44-54 (2014) crossref(new window)

23.
Butt MS, Nazir A, Sultan MT, Schron K. Morus alba L. nature's functional tonic. Trends Food Sci. Tech. 19: 505-512 (2008) crossref(new window)

24.
Devi B, Sharma N, Kumar D, Jeet K. Morus alba Linn: A phytopharmacological review. Int. J. Pharm. Pharm. Sci. 5: 14-18 (2013)

25.
Zafar MS, Muhammad F, Javed I, Akhtar M, Khaliq T, Aslam B, Waheed A, Yasmin R, Zafar H. White mulberry (Morus alba): A brief phytochemical and pharmacological evaluations account. Int. J. Agric. Biol. 15: 612620 (2013)

26.
Choi SW, Jang YJ, Lee YJ, Leem HH, Kim EO. Analysis of functional constituents in mulberry (Morus alba L.) twigs by different cultivars, producing areas, and heat processings. Prev. Nutr. Food Sci. 18: 256-262 (2013) crossref(new window)

27.
Jeandet P, Delaunois B, Conreux A, Donnez D. Nuzzo V, Cordelier S, Clment C, Courot E. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. Biofactors 36: 331-341 (2010) crossref(new window)

28.
Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol. 157: 876-890 (2011) crossref(new window)

29.
Zhou J, Li SX, Wang W, Guo XY, Lu XY, Yan XP, Huang D, Wei BY, Cao L. Variations in the levels of mulberroside A, oxyresveratrol, and resveratrol in mulberries in different seasons and during growth. Sci. World J. 2013: 380692 (2013)

30.
Schrder G, Brown JWS, Schrder J. Molecular analysis of resveratrol synthase: cDNA, genomic clones and relationship with chalcone synthase. Eur. J. Biochem. 172: 161-169 (1988) crossref(new window)

31.
Bavaresco L, Civardi S, Pezzutto S, Vezzulli S, Ferrari F. Grape production, technological parameters, and stilbenic compounds as affected by lime-induced chlorosis. J. Vitis 44: 63-65 (2005)

32.
Boue SM, Shih BY, Burow ME, Eggleston G, Lingle S, Pan YB, Kim D, Bhatnagar D. Postharvest accumulation of resveratrol and piceatannol in sugarcane with enhanced antioxidant activity. J. Agr. Food Chem. 61: 8412-8419 (2013) crossref(new window)

33.
Deluc LG, Decendit A, Papastamoulis Y, Merillon JM, Cushman JC, Cramer GR. Water deficit increases stilbene metabolism in Cabernet sauvignon berries. J. Agr. Food Chem. 59: 289-297 (2011) crossref(new window)

34.
Cantos E, Espn JC, Fernndez MJ, Oliva J, Toms-Barbern FA. Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J. Agr. Food Chem. 51: 1208-1214 (2003) crossref(new window)

35.
Sun HY, Xiao CF, Cai YC, Chen Y, Wei W, Liu XK, Lv ZL, Zou Y. Efficient synthesis of natural polyphenolic stilbenes: Resveratrol, piceatannol and oxyresveratrol. Chem. Pharm. Bull. 58: 1492-1496 (2010) crossref(new window)

36.
Poopyruchpong N, Rungruangsak K, Nimmanpisut S, Panijpan B, Ratanabanangkoon K. Some physico-chemical properties of 2,4,3',5'-tetrahydroxystilbene. J. Sci. Soc. Thailand 4: 163-167 (1978) crossref(new window)

37.
Mei M, Ruan JQ, Wu WJ, Zhou RN, Lei JPC, Zhao HY, Yan R, Wang YT. In vitro pharmacokinetic characterization of mulberroside A, the main polyhydroxylated stilbene in mulberry (Morus alba L.), and its bacterial metabolite oxyresveratrol in traditional oral use. J. Agr. Food Chem. 60: 2299-2308 (2012) crossref(new window)

38.
Song W, Wang HJ, Bucheli P, Zhang PF, Wei DZ, Lu YH. Phytochemical profiles of different mulberry (Morus sp.) species from China. J. Agr. Food Chem. 57: 9133-9140 (2009) crossref(new window)

39.
Maneechai S, Likhitwitayawuid K, Sritularak B, Palanuvej C, Ruangrungsi N, Sirisa-Ard P. Quantitative analysis of oxyresveratrol content in Artocarpus lakoocha and 'Puag-Haad'. Med. Prin. Pract. 18: 223-227 (2009) crossref(new window)

40.
Bertram RM, Takemoto JK, Remsberg CM, Vega-Villa KR, Sablani S, Davies NM. High-performance liquid chromatographic analysis: Applications to nutraceutical content and urinary disposition of oxyresveratrol in rats. Biomed. Chromatogr. 24: 516-521 (2010)

41.
Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, Ruparelia KC, Lamb JH, Farmer PB, Stanley LA, Burke MD. The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Brit. J. Cancer 86: 774-778 (2002) crossref(new window)

42.
Al-Jumaily EF, Shafiq ZA, Al-Bayati RI. Antihyperlipidemic effects of resvertrol and its derivative on alloxan diabetic rabbits. Che. Sci. Rev. Lett. 2: 278-286 (2013)

43.
Jo SP, Kim JK, Lim YH. Antihyperlipidemic effects of rhapontin and rhapontigenin from Rheum undulatum in rats fed a high-cholesterol diet. Planta Med. 80: 1067-1071 (2014) crossref(new window)

44.
Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer's disease. BMC Neurosci. 9: S6 (2008)

45.
Ban JY, Jeon SY, Nguyen TTH, Bae KH, Song KS, Seonga YH. Neuroprotective effect of oxyresveratrol from Smilacis chinae Rhizome on Amyloid ${\beta}$ Protein (25-35)-induced neurotoxicity in cultured rat cortical neurons. Biol. Pharm. Bull. 29: 2419-2424 (2006) crossref(new window)

46.
Breuer C, Wolf G, Andrabi SA, Lorenz P, Horn TFW. Bloodbrain barrier permeability to the neuroprotectant oxyresveratrol. Neurosci. Lett. 393: 113-118 (2006) crossref(new window)

47.
Jeon SY, Kwon SH, Seong YH, Bae K, Hur JM, Lee YY, Suh DY, Song KS. ${\beta}$-secretase (BACE1)-inhibiting stilbenoids from Smilax rhizoma. Phytomedicine 14: 403-408 (2007) crossref(new window)

48.
Chao J, Yu MS, Ho YS, Wang M, Chang RCC. Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radical Bio. Med. 45: 1019-1026 (2008) crossref(new window)

49.
Richard T, Pawlus AD, Iglsias ML, Pedrot E, Waffo-Teguo P, Merillon JM, Monti JP. Neuroprotective properties of resveratrol and derivatives. Ann. NY. Acad. Sci. 1215: 103-108 (2011) crossref(new window)

50.
Weber JT, Lamont M, Chibrikova L, Fekkes D, Vlug AS, Lorenz P, Kreutzmann P, Slemmer JE. Potential neuroprotective effects of oxyresveratrol against traumatic injury. Eur. J. Pharmacol. 680: 55-62 (2012) crossref(new window)

51.
Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CWW, Fong HHS, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218- 220 (1997) crossref(new window)

52.
Nam KA, Kim SH, Heo YH, Lee SK. Resveratrol analog, 3,5,2',4'-tetramethoxy-trans-stilbene, potentiates the inhibition of cell growth and induces apoptosis in human cancer cells. Arch. Pharm. Res. 24: 441-445 (2001) crossref(new window)

53.
Chowdhury SA, Kishino K, Satoh R, Hashimoto K, Kikuchi H, Nishikawa H, Shirataki Y, Sakagami H. Tumor-specificity and apoptosis-inducing activity of stilbenes and flavonoids. Anticancer Res. 25: 2055-2063 (2005)

54.
Lee SK, Nam KA, Hoe YH, Min HY, Kim EY, Ko HJ, Song SY, Lee TH, Kim SH. Synthesis and evaluation of cytotoxicity of stilbene analogues. Arch. Pharm. Res. 26: 253-257 (2003) crossref(new window)

55.
Son PS, Park SA, Na HK, Jue DM, Kim SH, Surh YJ. Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-${\kappa}B$ activation and cyclooxygenase-2 expression in human breast epithelial cells: Cysteine 179 of IKK${\beta}$ as a potential target. Carcinogenesis 31: 1442-1449 (2010) crossref(new window)

56.
Tan Y, Liu C, Chen R. Phenolic constituents from stem bark of Morus wittiorum and their anti-inflammation and cytotoxicity. China J. Chin. Mater. Medica 35: 2700-2703 (2010)

57.
Li, H. Resveratrol derivatives as colorectal cancer chemopreventive agents. PhD thesis, The University of Hong Kong, Pokfulam, Hong Kong (2010)

58.
Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1${\alpha}$. Cell 127: 1109-1122 (2006) crossref(new window)

59.
Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 6: 307-319 (2007) crossref(new window)

60.
Zabolotny JM, Kim YB. Silencing insulin resistance through SIRT1. Cell Metab. 6: 247-249 (2007) crossref(new window)

61.
Koo SH, Montminy M. In vino veritas: A tale of two Sirt1s? Cell 127: 1091-1093 (2006) crossref(new window)

62.
Minakawa M, Miura Y, Yagasaki K. Piceatannol, a resveratrol derivative, promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and suppresses blood glucose levels in type 2 diabetic model db/db mice. Biochem. Bioph. Res. Co. 422: 469-475 (2012) crossref(new window)

63.
Wang S, Fang M, Ma YL, Zhang YQ. Preparation of the branch bark ethanol extract in mulberry Morus alba, its antioxidation, and antihyperglycemic activity In vivo. Evid.-Based Compl. Alt. 2014: 569-652 (2014)

64.
Povichit N, Phrutivorapongkul A, Suttajit M, Leelapornpisid P. Antiglycation and antioxidant activities of oxyresveratrol extracted from the heartwood of Artocarpus lakoocha Roxb. Maejo Int. J. Sci. Tech. 4: 454-461 (2010)

65.
Suhartati T, Yandri, Suwandi JF, Hadi S. In vitro and in vivo antiplasmodial activity of oxyresveratrol and artonine isolated from two Artocarpus plants in Indonesia. Orient. J. Chem. 26: 825-830 (2010)

66.
Ratanabanangkoon K, Poopyruchpong N, Charoensiri K. A preliminary study on the antifungal activity of 2,4,3',5'-tetrahydroxystilbene on dermatophytes. J. Sci. Soc. Thailand 2: 202-205 (1976) crossref(new window)

67.
Senapong S, Puripattanavong J, Teanpaisan R. Anticandidal and antibiofilm activity of Artocarpus lakoocha extract. Songklanakarin J. Sci. Technol. 36: 451-457 (2014)

68.
Mazimba O, Majinda RRT, Motlhanka D. Antioxidant and antibacterial constituents from Morus nigra. Acad. J. 5: 751-754 (2011)

69.
Phoolcharoen W, Sooampon S, Sritularak B, Likhitwitayawuid K, Kuvatanasuchati J, Pavasant P. Anti-periodontal pathogen and anti-inflammatory activities of oxyresveratrol. Nat. Prod. Commun. 8: 613-616 (2013)

70.
Teanpaisan R, Senapong S, Puripattanavong J. In vitro antimicrobial and antibiofilm activity of Artocarpus lakoocha (Moraceae) extract against some oral pathogens. Trop. J. Pharm. Res. 13: 1149-1155 (2014) crossref(new window)

71.
Chuanasa T, Phromjai J, Lipipun V, Likhitwitayawuid K, Suzuki M, Pramyothin P, Hattori M, Shiraki K. Anti-herpes simplex virus (HSV-1) activity of oxyresveratrol derived from Thai medicinal plant: Mechanism of action and therapeutic efficacy on cutaneous HSV-1 infection in mice. Antivir. Res. 80: 62-70 (2008) crossref(new window)

72.
Sasivimolphan P, Lipipun V, Ritthidej G, Chitphet K, Yoshida Y, Daikoku T, Sritularak B, Likhitwitayawuid K, Pramyothin P, Hattori M, Shiraki K. Microemulsion-based oxyresveratrol for topical treatment of herpes simplex virus (HSV) infection: Physicochemical properties and efficacy in cutaneous HSV-1 infection in mice. AAPS Pharm. Sci. Tech. 13: 1266-1275 (2012) crossref(new window)

73.
Sasivimolphan P, Lipipun V, Likhitwitayawuid K, Takemoto M, Pramyothin P, Hattori M, Shiraki K. Inhibitory activity of oxyresveratrol on wild-type and drug-resistant varicella-zoster virus replication in vitro. Antivir. Res. 84: 95-97 (2009) crossref(new window)

74.
Wang WX, Qian JY, Wang XJ, Jiang AP, Jia AQ. Anti-HIV-1 activities of extracts and phenolics from Smilax china L. Pak. J. Pharm. Sci. 27: 147-151 (2014)

75.
Galindo I, Hernez B, BernJ, Fenoll J, Cenis JL, Escribano JM, Alonso C. Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication. Antivir. Res. 91: 57-63 (2011) crossref(new window)

76.
Sureda A, Tejada S, del Mar Bibiloni M, Antoni Tur J, Pons A. Polyphenols: Well beyond the antioxidant capacity: Polyphenol supplementation and exercise-induced oxidative stress and inflammation. Curr. Pharm. Biotechno. 15: 373-379 (2014) crossref(new window)

77.
Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 5: 404-417 (2014) crossref(new window)

78.
Flamini R, Mattivi F, de Rosso M, Arapitsas P, Bavaresco L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 14: 19651-19669 (2013) crossref(new window)

79.
Aftab N, Likhitwitayawuid K, Vieira A. Comparative antioxidant activities and synergism of resveratrol and oxyresveratrol. Nat. Prod. Res. 24: 1726-1733 (2010) crossref(new window)

80.
Oh H, Ko EK, Jun JY, Oh MH, Park SU, Kang KH, Lee HS, Kim YC. Hepatoprotective and free radical scavenging activities of prenylflavonoids, coumarin, and stilbene from Morus alba. Planta Med. 68: 932-934 (2002) crossref(new window)

81.
Mouihate A, Horn TF, Pittman QJ. Oxyresveratrol dampens neuroimmune responses in vivo: A selective effect on TNF-${\alpha}$. Am. J. Physiol.-Reg. I. 291: R1215-R1221 (2006)

82.
Choi EM, Hwang JK. Effects of Morus alba leaf extract on the production of nitric oxide, prostaglandin $E_2$ and cytokines in RAW264.7 macrophages. Fitoterapia 76: 608-613 (2005) crossref(new window)

83.
Fang SC, Hsu CL, Yen GC. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. J. Agr. Food Chem. 56: 4463-4468 (2008) crossref(new window)

84.
Chen YC, Tien YJ, Chen CH, Beltran FN, Amor EC, Wang RJ, Wu DJ, Mettling C, Lin YL, Yang WC. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complem. Altern. M. 13: 45 (2013) crossref(new window)

85.
Bharani SE, Asad M, Dhamanigi SS, Chandrakala GK. Immunomodulatory activity of methanolic extract of Morus alba Linn.(mulberry) leaves. Pak. J. Pharm. Sci. 23: 63-68 (2010)

86.
Qiu F, Komatsu K, Saito K, Kawasaki K, Yao X, Kano Y. Pharmacological properties of traditional medicines. XXII. Pharmacokinetic study of mulberroside A and its metabolites in rat. Biol. Pharm. Bull. 19: 1463-1467 (1996) crossref(new window)

87.
Huang HL, Zhang JQ, Chena GT, Lu ZQ, Sha N, Guo DA. Simultaneous determination of oxyresveratrol and resveratrol in rat bile and urine by HPLC after oral administration of Smilax china extract. Nat. Prod. Commun. 4: 825-830 (2009)

88.
Huang H, Chen G, Lu Z, Zhang J, Guo DA. Identification of seven metabolites of oxyresveratrol in rat urine and bile using liquid chromatography/tandem mass spectrometry. Biomed. Chromatogr. 24: 426-432 (2010)

89.
Tian F, Wei H, Jia T, Tian H. An improved highly sensitive method to determine low oxyresveratrol concentrations in rat plasma and its pharmacokinetic application. Biomed. Chromatogr. 28: 667-672 (2014) crossref(new window)