Advanced SearchSearch Tips
Single Cell Oil-Recent Trends in Microbial Production and Utilization
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Single Cell Oil-Recent Trends in Microbial Production and Utilization
Kim, Yong-Ro; Yoon, Suk Hoo;
  PDF(new window)
With the shortage of edible fats and oils and depletion of fossil fuels in many countries, microbial lipids is emerging as one of the most promising sources of fats and oils in the global market. Oleaginous microorganisms, also called single cell oils (SCOs), can accumulate lipids more than 25% in the cell volume. Triacylglycerols are the major storage lipids. SCOs offer several advantages for lipid production as follows: SCOs have short life span which would shorten production time, cultivation conditions are not affected by climate and place; the production process is easy to control. There are a number of oleaginous yeasts, molds, and microalgae. Furthermore, the lipid productivity of SCOs can be enhanced through strain improvement and the optimization of cultivation conditions. The new strains developed using recent advanced biotechnical methods showed greatly improved oleaginicity. Further, hydrolysates of lignocellulosic materials can be used as carbon sources for economic production of SCO.
single cell oil;microbial lipid;functional lipid;fermentation;genetic and metabolic engineering;
 Cited by
Woodbine M. Microbial fat: Microorganisms as potential fat producers. Prog. Ind. M. 1: 181-245 (1959)

Ratledge C, Cohen Z. Microbial and algal oils: Do they have a future for biodiesel or as commodity oils? Lipid Technol. 20: 155-160 (2008) crossref(new window)

Ratledge C. Single cell oils for the 21st century. 2nd ed. pp. 3-26. In: Single cell oils-microbial and algal oils. Cohen Z, Ratledge C (eds). AOCS Publishing, Champaign, IL, USA (2010)

Choi SY, Ryu DDY, Rhee JS. Production of microbial lipid: Effects of growth rate and oxygen on lipid synthesis and fatty acid composition of Rhodotorula gracilis. Biotechnol. Bioeng. 24: 1165-1172 (1982) crossref(new window)

Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52: 395-408 (2013) crossref(new window)

Yoon SH, Rhim JW, Choi SY, Ryu DDY, Rhee JS. Effect of carbon and nitrogen sources on lipid production of Rhodotorula gracilis. J. Ferment. Technol. 60: 243-246 (1982)

Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G. Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochem. 31: 355-361 (1996) crossref(new window)

Li YH, Liu B, Zhao ZB, Bai FW. Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chinese J. Biotechnol. 22: 650-656 (2006) crossref(new window)

Yoon SH, Rhee JS. Lipid from yeast fermentation: Effects of cultural conditions on lipid production and its characteristics of Rhodotorula gracilis. J. Am. Oil Chem. Soc. 60: 1281-1286 (1983) crossref(new window)

Yoon SH, Rhee JA. Quantitative physiology of Rhodotorula glutinis for microbial lipid production. Process Biochem. 18: 2-4 (1983)

Liang XA, Dong WB, Miao XJ, Dai CJ. Production technology and influencing factors of microorganism grease. Food Res. Dev. 27: 46-47 (2006)

Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S. Single cell oils (SCOs) from oleaginous yeasts and moulds: Production and genetics. Biomass Bioenerg. 68: 135-150 (2014) crossref(new window)

Kurokawa H. Oleaginous yeast convert glycerol to triacylglycerol. INFORM 26: 618-619 (2015) crossref(new window)

Shen JJ, Li FC, Yang QL, Feng DW, Qin S, Zhao ZB. Fermentation of Spartina anglica acid hydrolysate by Trichosporon cutaneum for microbial lipid production. Mar. Sci. 3: 38-41 (2007)

Certik M, Shimizu S. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 87: 1-14 (1999) crossref(new window)

Cheirsilp B. Kitcha S. Solid state fermentation by cellulolytic oleaginous fungi for direct conversion of lignocellulosic biomass into lipids: Fed-batch and repeated-batch fermentations. Ind. Crop. Prod. 66: 73-80 (2015) crossref(new window)

Illman AM, Scragg AH, Shales SW. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Tech. 27: 631-635 (2000) crossref(new window)

Chen GQ, Jiang Y, Chen F. Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chem. 109: 88-94 (2008) crossref(new window)

Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Biores. Technol. 101: 1406-1413 (2010) crossref(new window)

Gouda MK, Omer SH, Aouad LM. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J. Microbiol. Biotechn. 24: 1703-1711 (2008) crossref(new window)

Kalscheuer R, Stolting T, Steinbuchel A. Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152: 2529-2536 (2006) crossref(new window)

Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Tech. 113: 1031-1051 (2011) crossref(new window)

Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG. Biodiesel from algae: Challenges and prospects. Curr. Opin. Biotech. 21: 277-286 (2010) crossref(new window)

Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Yarrowia lipolytica as a model for bio-oil production. Prog. Lipid Res. 48: 375-387 (2009) crossref(new window)

Rajakumari S, Grillitsch K, Daum G. Synthesis and turnover of non-polar lipids in yeast. Prog. Lipid Res. 47:157-171 (2008) crossref(new window)

Sitepu IR, Sestric R, Ignatia L, Levin D, Bruce German J, Gillies LA, Almada LAG, Boundy-Mills KL. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresource Technol. 144: 360-369 (2013) crossref(new window)

Meesters PAEP, Huijberts GNM, Eggink G. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl. Microbiol. Biot. 45: 575-579 (1996) crossref(new window)

Liu H, Zhao X, Wang F, Li Y, Jiang X, Ye M, Zhao ZK, Zou H. Comparative proteomic analysis of Rhodosporidium toruloides during lipid accumulation. Yeast 26: 553-566 (2009) crossref(new window)

Pedersen TA. Lipid formation in Cryptococcus terricolus. I. Nitrogen nutrition and lipid formation. Acta Chem. Scand. 16: 359-373 (1962) crossref(new window)

Connor MR, Atsumi S. Synthetic biology guides biofuel production. BioMed. Res. Int. 2010: 1-9 (2010)

Radulovic M, Knittelfelder O, Cristobal-Sarramian A, Kolb D, Wolinski H, Kohlwein SD. The emergence of lipid droplets in yeast: Current status and experimental approaches. Curr. Genet. 59: 231-242 (2013) crossref(new window)

Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G. Lipid production by an unsaturated fatty acid auxotroph of the oleaginous yeast Apiotrichum curvatum grown in single-stage continuous culture. Appl. Microbiol. Biot. 40: 483-488 (1993)

Ykema A, Verbree EC, Kater MM, Smit H. Optimization of lipid production in the oleaginous yeast Apiotrichum curvatum in wheypermeate. Appl. Microbiol. Biot. 29: 211-218 (1988)

Laoteng K, Certik M, Cheevadhanark S. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi. Chem. Pap. 65: 97-103 (2011)

Cohen Z. Heimer YM. Production of polyunsaturated fatty acids (EPA, ARA and GLA) by the microalgae Porphyridium and Spirulina. pp. 243-273. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)

Pritchett WC, Taylor WG, Carroll DM. Chlorophyll removal during earth bleaching of soybean oil. J. Am. Oil Chem. Soc. 24: 225-227 (1947) crossref(new window)

Ratledge, C. Microbial lipids: Commercial realities or academic curiosities. pp. 1-14. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)

Nakabara T, Yokochi T, Kamisaka Y, Suzuki O. Gamma-linolenic acid from genus Mortierellu. pp. 61-97. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)

Botba A, Strauss T, Kock JLF, Pohl CH, Coetzee DJ. Carbon source utilization and $\gamma$-linolenic acid production by Mucoralean fungi. Syst. Appl. Microbiol. 20: 165-170 (1997) crossref(new window)

Fukuda H. Morikawa H. Enhancement of $\gamma$-linolenic acid production by Mucor ambiguus with nonionic surfactants. Appl. Microbiol. Biot. 27: 15-20 (1987)

Roux MP, Kock JLF, Botha A, du Preez JC, Wells GV, Botes PJ. Mucor: A source of cocoa butter and gamma-linolenic acid. World J. Microbiol. Biotechn. 10: 417-422 (1994) crossref(new window)

Kristofikova L, Rosenberg M, Vlnova A, Sajbidor J, Certik M. Selection of Rhizopus strains for L(+)-lactic acid and $\gamma$-linolenic acid production. Folia Microbiol. 36: 451-455 (1991) crossref(new window)

Emelyanova EV. Gamma-linolenic acid production by Cunning-hamella japonica in solid state fermentation. Process Biochem. 31: 431-434 (1996) crossref(new window)

Amano N, Shinmen Y, Akimoto K, Kawashima H, Amachi T. Chemotaxonomic significance of fatty acid composition in the genus Mortierella (Zygomycetes, Mortierellaceae). Mycotaxon 45: 257-265 (1992)

Eroshin VK, Dedyukhina EG, Chistyakova TI, Zhelifonova VP, Botast RJ. Studies on arachidonic acid production by Mortierella fungi: A microbiological method for selecting arachidonic acid producers. Microbiology 65: 26-31 (1996)

Sajbidor J, Kozelouhova D, Certik M. Influence of some metal ions on the lipid content and arachidonic acid production by Mortierella sp.. Folia Microbiol. 37: 404-406 (1992) crossref(new window)

Chen HC, Chang CC, Chen CX. Optimization of arachidonic acid production by Mortierella alpina Wuji-H4 isolate. J. Am. Oil Chem. Soc. 74: 569-578 (1997) crossref(new window)

Totani N, Watanabe A, Oba K. An improved method of arachidonic acid production by Mortierella alpina. Yukagaku 36: 328-331 (1987)

Stredanska S, Slugen D, Stredansky M, Grego J. Arachidonic acid production by Mortierella alpina grown on solid substrates. World J. Microbiol. Biotechn. 9: 511-513 (1993) crossref(new window)

Kim SK, Chung GH, Han JJ, Cho SW, Yoon SH. Effect of extraction methods on the extraction yield of total lipid and arachidonic acid from single cell oil, Mortierella sp. Korean J. Food Sci. Technol. 47: 281-285 (2015) crossref(new window)

Kim SK, Chung GH, Han JJ, Cho SW, Yoon SH. Bleaching of lipids extracted from single cell oil produced by Mortierella sp.. Korean J. Food Sci. Technol. 47: 405-408 (2015) crossref(new window)

Shimizu S, Akimoto K, Kawashima H, Shinmen Y, Yamada H. Production of dihomo-$\gamma$-linolenic acid by Mortierella alpina 1S-4. J. Am. Oil Chem. Soc. 66: 237-241 (1989) crossref(new window)

Shimizu S, Akimoto K, Sugano M, Yamada H. Studies on desaturase inhibitors of polyunsaturated fatty acid biosynthesis. pp. 37-41. In: Essential fatty acids and eicosanoids. Sinclair A, Gibson R (eds). AOCS Press, Champaign, IL, USA (1993).

Jareonkitmongkol S, Sakuradani E, Shimizu S. A novel ${\Delta}5$-desaturase defective mutant of Mortierella alpina lS-4 and its dihomo-$\gamma$-linolenic acid productivity. Appl. Environ. Microb. 59: 4300-4304 (1993)

Shimizu S, Kawashima H, Shinmen Y, Akimoto K, Yamada H. Production of eicosapentaenoic acid by Mortierellu fungi. J. Am. Oil Chem. Soc. 65: 1455-1459 (1988) crossref(new window)

Shimizu S, Kawashima H, Akimoto K, Shinmen Y, Yamada H. Conversion of linseed oil to an eicosapentaenoic acid-containing oil by Mortierella alpina lS-4 at low temperature. Appl. Microbial. Biotechn. 32: l-4 (1989)

Bajpai PK, Bajpai P, Ward OP. Optimisation of culture conditions for production of eicosapentaenoic acid by Mortierella elongata NRRL 5513. J. Ind. Microbiol. 9: 11-18 (1992) crossref(new window)

Kotula KL, Yi M. Optimization of conditions for the production of eicosapentaenoic acid by Mortierella. J. Food Quality 17: 101-114 (1994) crossref(new window)

Jareonkitmongkol S, Shimizu S, Yamada H. Production of an eicosapentaenoic acid-containing oil by a ${\Delta}l2$ desaturase-defective mutant of Mortierella alpina lS-4. J. Am. Oil Chem. Soc. 70: 119-123 (1993) crossref(new window)

Shirasaka N, Shimizu S. 'Production of eicosapentaenoic acid by Saprolegnia sp. 28YTF-1. J. Am. Oil Chem. Soc. 72: 1545-1549 (1995) crossref(new window)

Weete JD, Gandhi SR. Enhancement of Czo polyunsaturated fatty acid production in Pythium ultimum. pp. 98-117. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)

O'Brien DJ, Kurantz MJ, Kwoczak R. Production of eicosapentaenoic acid by the filamentous fungus Pythium irregulare. Appl. Microbial. Biotechn. 40: 211-214 (1993)

Boswell KDB, Glaude R, Prima B, Kyle DJ. SCO production by fermentative microalgae. pp. 274-286. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)

Yazawa K, Watanabe K., Ishikawa C, Kondo K, Kimura S. Production of eicosapentaenoic acid from marine bacteria. pp. 29-51. In: Industrial applications of single cell oils. Kyle DJ, Ratledge C (eds). AOCS Press, Champaign, IL, USA (1992)

Kendrick A, Ratledge C. Lipids of selected molds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids 27: 15-20 (1992) crossref(new window)

Singh A, Ward OP. Microbial production of docosahexaenoic acid (DHA, C22:6). Vol 45. pp. 271-312. In: Advances in Applied Microbiology. Neidleman SL, Laskin AI (eds). Academic press, Waltham, MA, USA(1997) crossref(new window)

Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T. Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J. Am. Oil Chem. Soc. 74: 1431-1434 (1997) crossref(new window)

Kawashima H, Kamada N, Sakuradani E, Jareonkitmongkol S, Akimoto K, Shimizu S. Production of 8,11,14,17-cis-eicosatetraenoic acid by ${\Delta}5 $desaturase-defective mutants of an arachidonic acid-producing fungus, Mortierella alpina. J. Am. Oil Chem. Soc. 74: 455-459 (1997) crossref(new window)

Rattray J. Yeast. pp. 555-697. In: Microbial lipids. Ratledge C, Wilkinson S (eds). Academic press, Waltham, MA, USA (1988)

Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Shima J. Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresource Technol. 153: 230-235 (2014) crossref(new window)

Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL. Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnol. Adv. 32: 1336-1360 (2014) crossref(new window)

Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories. Appl. Microbiol. Biotechn. 90: 1219-1227 (2011) crossref(new window)

Chi Z, Zheng Y, Jiang A, Chen S. Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl. Biochem. Biotech. 165: 442-453 (2011) crossref(new window)

Galafassi S, Cucchetti D, Pizza F, Franzosi G, Bianchi D, Compagno C. Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis. Bioresource Technol. 111: 398-403 (2012) crossref(new window)

Leiva-Candia DE, Pinzi S, Redel-Macias MD, Koutinas A,Webb C, Dorado MP. The potential for agro-industrial waste utilization using oleaginous yeast for the production of biodiesel. Fuel 123: 33-42 (2014) crossref(new window)

Kraisintu P, Yongmanitchai W, Limtong S. Selection and optimization for lipid production of a newly isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Kasetsart. J. Nat. Sci. 44: 436-445 (2010)

van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30: 1458-1480 (2012) crossref(new window)

Girio F, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R. Hemicelluloses for fuel ethanol: A review. Bioresource Technol. 101: 4775-4800 (2010) crossref(new window)

Husain SS, Hardin MM. Influence of carbohydrate and nitrogen sources upon lipid production by certain yeasts. J. Food Sci. 17: 60-66 (1952) crossref(new window)

Evans CT, Ratledge C. Effect of nitrogen source on lipid accumulation in oleaginous yeasts. J. Gen. Microbiol. 130: 1693-1704 (1984)

Turcotte G, Kosaric N. Lipid biosynthesis in oleaginous yeasts. Bioprocess Eng. 40: 73-92 (2005)

Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM. Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl. Environ. Microb. 74: 7779-7789 (2008) crossref(new window)

Rattray JB, Scheibeci A, Kidby D. Lipids of yeasts. Bacteriol. Rev. 39: 197-231 (1975)

Miller JJ, Webb NS. Isolation of yeasts from soil with the aid of acid, rose bengal, and oxgall. Soil Sci. 77: 197-204 (1954) crossref(new window)

Kessell RHJ. Fatty acids of Rhodotorula gracilis: Fat production in submerged culture and the particular effect of pH value. J. Appl. Bacteriol. 31: 220-231 (1968) crossref(new window)

Hunter K, Rose AH. Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. BBA-Lipid. Lipid Met. 260: 639-653 (1972) crossref(new window)

Kates M, Paradis M. Phospholipid desaturation in Candida lipolytica as a function of temperature and growth. Can. J. Biochem. Cell B. 51: 184-197 (1973) crossref(new window)

Pan JG, Rhee JS. Biomass yields and energetic yields of oleaginous yeasts in batch culture. Biotechnol. Bioeng. 28: 112-114 (1986) crossref(new window)

Hiroaki Y, Hironori M, Takeshi K, Shoichi S. Mass production of lipids by Lipomyces starkeyi in microcomputer-aided fed-batch culture. J. Ferment. Technol. 61: 275-280 (1983)

Ratledge C, Streekstra H, Cohen Z, Fichtali J. Downstream processing, extraction, and purification of single cell oils. 2nd ed. pp. 179-195. In: Single cell oils - microbial and algal oils. Cohen Z, Ratledge C (eds). AOCS Publishing, Champaign, IL, USA (2010)

Wang JJ, Zhang BR, Chen SL. Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid. Process Biochem. 46: 1436-1441 (2011) crossref(new window)

Ruenwai R, Cheevadhanarak S, Laoteng K. Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol. Biotechnol. 42: 327-332 (2009) crossref(new window)

Liang Y, Cui Y, Trushenski J, Blackburn JW. Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresource Technol. 101: 7581-7586 (2010) crossref(new window)

Zaremberg V, McMaster CR. Differential partitioning of lipids metabolized by separate yeast glycerol-3-phosphate acyltransferases reveals that phospholipase D generation of phosphatidic acid mediates sensitivity to choline-containing lysolipids and drugs. J. Biol. Chem. 277: 39035-39044 (2002) crossref(new window)

Bouvier-Nave P, Benveniste P, Oelkers P, Sturley SL, Schaller H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur. J. Biochem. 267: 85-96 (2000) crossref(new window)

Lin H, Castro NM, Bennett GN, San KY. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: A potential tool in metabolic engineering. Appl. Microbiol. Biotechn. 71: 870-874 (2006) crossref(new window)

Yoon SH, Park JS, Rhee JS. Production of NADPH for lipogenesis in oleaginous yeast Rhodotorula glutinis. Kor. J. Appl. Micobiol. Bioeng. 12: 247-251 (1984)

Meng X, Yang J, Cao Y, Li L, Jiang X, Xu X, Liu W, Mo X, Zhang Y. Increasing fatty acid production in E. coli by simulating the lipid accumulation of oleaginous microorganisms. J. Ind. Microbiol. Biot. 38: 919-925 (2011) crossref(new window)

Papanikolaou S, Galiotou-Panayotou M, Fakas S, Komaitis M, Aggelis G. Citric acid production by Yarrowia lipolytica cultivated on olive-mill wastewater-based media. Bioresource Technol. 99: 2419-2428 (2008) crossref(new window)