Advanced SearchSearch Tips
Development of a Rapid Foodborne-pathogen-detection Method Involving Whole-genome Amplification
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Development of a Rapid Foodborne-pathogen-detection Method Involving Whole-genome Amplification
Seong, Ji-Yeong; Ko, Young-Jun; Myeong, Hyeon-Koon; Oh, Se-Wook;
  PDF(new window)
In this study, polyethylene glycol (PEG) was used to improve DNA amplification efficiency during whole genome amplification (WGA). Amplification efficiency was determined by adding PEG with different molecular weights to the WGA reaction. The greatest increase in amplification efficiency was obtained with PEG 4,000 used at 1.5% concentration. Foodborne pathogenic DNA was amplified by WGA and quantitatively analyzed by real-time polymerase chain reaction. DNA of Salmonella serotype Typhimurium, Listeria monocytogenes, and Vibrio parahaemolyticus was amplified 7,777.01, 9,981.22, and 1,239.03 fold, respectively, by WGA. On adding PEG in the WGA reaction (i.e., enhanced WGA [eWGA]), 18-40-fold more DNA amplification was achieved. Thus, these analyses showed that foodborne pathogens, which are usually present at very low concentration in foods, can be detected by real-time PCR and WGA.
whole genome amplification;genomic DNA;pathogen;detection;real-time PCR;
 Cited by
Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J, Kruse H. Food-borne diseases-the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139: S3-S15 (2010) crossref(new window)

Ministry of Food and Drug Safety. Food Safety Information. Available from: MENU_GRP02. Accessed Jan. 12, 2016.

Crim SM, Iwamoto M, Huang JY, Griffin PM, Gilliss D, Cronquist AB, Cartter M, Tobin-D'Angelo M, Blythe D, Smith K, Lathrop S, Zansky S, Cieslak PR, Dunn J, Holt KG, Lance S, Tauxe R, Henao OL. Incidence and trends of infection with pathogens transmitted commonly through food-foodborne diseases active surveillance Network, 10 U.S. sites, 2006-2013. MMWR Morb. Mortal. Wkly Rep. 63: 328-32 (2014)

Bohaychuk VM, Gensler GE, McFall ME, King RK, Renter DG. A real-time PCR assay for the detection of Salmonella in a wide variety of food and food-animal matrices. J. Food Prot. 70: 1080-1087 (2007) crossref(new window)

Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw MA, Grudzinskas JG, Rutherford A. Isothermal whole genome amplification from single and small numbers of cells: A new era for preimplantation genetic diagnosis of inherited disease. Mol. Hum. Reprod. 10: 767-772 (2004) crossref(new window)

Eckert KA, Kunkel TA. DNA polymerase fidelity and the polymerase chain reaction. Genome Res. 1: 17-24 (1991) crossref(new window)

Uda A, Tanabayashi K, Fujita O, Hotta A, Yamamoto Y, Yamada A. Comparison of whole genome amplification methods for detecting pathogenic bacterial genomic DNA using microarray. Jpn. J. Infect. Dis. 60: 355-361 (2007)

Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA. 99: 5261-5266 (2002) crossref(new window)

Barker DL, Hansen MST, Faruqi AF, Giannola D, Irsula OR, Lasken RS, Latterich M, Makarov V, Oliphant A, Pinter JH, Shen R, Sleptsova I, Ziehler W, Lai E. Two methods of wholegenome amplification enable accurate genotyping across a 2320- SNP linkage panel. Genome Res. 14: 901-907 (2004) crossref(new window)

Dietmaier W, Hartmann A, Wallinger S, Heinmöller E, Kerner T, Endl E, Jauch KW, Hofstädter F, Rüschoff J. Multiple mutation analyses in single tumor cells with improved whole genome amplification. Am. J. Pathol. 154: 83-95 (1999) crossref(new window)

Lasken RS, Egholm M. Whole genome amplification: Abundant supplies of DNA from precious samples or clinical specimens. Trends Biotechnol. 21: 531-535 (2003) crossref(new window)

Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: Implications for genetic analysis. Proc. Natl. Acad. Sci. USA. 89: 5847-5851 (1992) crossref(new window)

Ellis RJ. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 26: 597-604 (2001) crossref(new window)

Maheux AF, Bissonnette L, Boissinot M, Bernier JLT, Huppe V, Picard FJ, Berube E, Bergeron MG. Rapid concentration and molecular enrichment approach for sensitive detection of Escherichia coli and shigella species in potable water samples. Appl. Environ. Microbiol. 77: 6199-6207 (2011) crossref(new window)

Renard A, di Marco PG, Egea-Cortines M, Weiss J. Application of whole genome amplification and quantitative PCR for detection and quantification of spoilage yeasts in orange juice. Int. J. Food Microbiol. 126: 195-201 (2008) crossref(new window)

Bachmann B, Luke W, Hunsmann G. Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res. 18: 1309 (1990) crossref(new window)

Pomp D, Medrano JF. Organic solvents as facilitators of polymerase chain reaction. Biotechniques 10: 58-59 (1991)

Musso M, Bocciardi R, Parodi S, Ravazzolo R, Ceccherini I. Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences. J. Mol. Diagn. 8: 544-550 (2006) crossref(new window)

Mamedov TG, Pienaar E, Whitney SE, TerMaat JR, Carvill G, Goliath R, Subramanian A, Viljoen HJ. A fundamental study of the PCR amplification of GC-rich DNA templates. Comput. Biol. Chem. 32: 452-457 (2008) crossref(new window)