JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Chitosan Nanoparticle System for Improving Blood Circulation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Chitosan Nanoparticle System for Improving Blood Circulation
Lee, Ji-Soo; Yoon, Hyun-Sook; Kim, Eun Suh; Nam, Hee Sop; Lee, Hyeon Gyu;
  PDF(new window)
 Abstract
The principal objective of this study was to produce a chitosan nanoparticle (NP) system for improving blood circulation. Chitosan NPs were prepared using fucoidan and acid (PGA), denoted as CS/Fu and CS/Fu/PGA NPs, respectively. As the chitosan concentration was increased, the activated partial thromboplastin time (APTT) of the NPs significantly increased (p<0.05). When the concentration of fucoidan and was 5-20 and , respectively, the size of the CS/Fu and CS/Fu/PGA NPs was approximately 200 and 100 nm, respectively. With an increase in the fucoidan and PGA concentration, the APTT of CS/Fu and CS/Fu/PGA NPs significantly increased (p<0.05). These results suggest that CS/Fu and CS/Fu/PGA NPs could be used as a potent NP system for improving blood circulation.
 Keywords
blood circulation;activated partial thromboplastin time;nanoparticle;chitosan;
 Language
Korean
 Cited by
 References
1.
Kim YD, Bae ON, Chung SM, Chung JH. Improvement of haemostasis mediated by anti-platelet activities by plant vinegar. J. Toxicol. Pubulic Health 20: 137-142 (2004)

2.
Chung HK, Shin MJ, Cha YJ, Lee KH. Effect of onion peel extracts on blood lipid profile and blood coagulation in high fat fed SD rats. Korean J. Food Nutr. 24: 442-450 (2011) crossref(new window)

3.
Noh KH, Park CM, Jang JH, Shin JH, Cho MK, Kim JO, Song YS. Effects of nattokinase fibrinol supplementation on fibrinolysis and atherogenesis. J. Life Sci. 19: 289-298 (2009) crossref(new window)

4.
Akahane N, Ohba S, Suzuki J, Wakabayashi T, Nakahara T, Yanagi K, Ohsiima N. Antithrombotic activity of a symmetrical triglyceride with eicosapentaenoic acid and ${\gamma}$-linolenic acid in guinea pig mesenteric microvasculature. Thromb. Res. 78: 441-450 (1995) crossref(new window)

5.
Akiba S, Kawauchi T, Oka T, Hashizume T, Sato T. Inhibitory effect of the leaf extract of Ginkgo biloba L. on oxidative stressinduced platelet aggregation. Biochem. Mol. Biol. Life Sci. 46: 1243-1248 (1998)

6.
Choi IS, Jin BH. Effects of sardine oil on plasma lipids, fatty acid composition of erythrocyte membrane phospholipids and lipid peroxide levels of plasma and liver in rats. Korean J. Nutr. 20: 330-340 (1987)

7.
Lee HA, Yoo IJ, Lee BH. Research and development trends on omega-3 fatty acid fortified foodstuffs. J. Korean Soc. Food Nutr. 26: 161-174 (1997)

8.
Yu JY, Jin YR, Lee JJ, Chung JH, Noh JY, You SH, Kim KN, Im JH, Lee JH, Seo JM, Han HJ, Lim Y, Park ES, Kim TJ, Shin KS, Wee JJ, Park JD, Yun YP. Antiplatelet and antithrombotic activities of Korean red ginseng. Arch. Pharm. Res. 29: 898-903 (2006) crossref(new window)

9.
Tan CP, Nakajima M. ${\beta}$-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem. 92: 661-671 (2005) crossref(new window)

10.
Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 50: 47-60 (2000) crossref(new window)

11.
Cho, YH, Shin, DS, Park J. A study on wall materials for flavor encapsulation. Korean J. Food Sci. Tech. 31: 1563-1569 (1999)

12.
Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S. Encapsulation of food ingredients using nanoliposome technology. Int. J. Food Prop. 11: 833-844 (2008) crossref(new window)

13.
Fathi M, Mozafari MR, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci. Tech. 23: 13-27 (2012) crossref(new window)

14.
Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 1: 1806-1815 (2011) crossref(new window)

15.
Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharm. Sci. 36: 502-510 (2009) crossref(new window)

16.
Rashidi L, Khosravi-Darani K. The applications of nanotechnology in food industry. Crit. Rev. Food Sci. 51: 723-730 (2011) crossref(new window)

17.
Gibbs BF, Kermasha S, Alli I, Mulligan CN. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 50: 213-224 (1999) crossref(new window)

18.
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Delivery Rev. 60: 1650-1662 (2008) crossref(new window)

19.
Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 274: 1-33 (2004) crossref(new window)

20.
Yoksan R, Jirawutthiwongchai J, Arpo K. Encapsulation of ascorbyl palmitate in chitosan nanoparticles by oil-in-water emulsion and ionic gelation processes. Colloid. Surface. B. 76: 292-297 (2010) crossref(new window)

21.
Kim DG, Jeong YI, Choi C, Roh SH, Kang SK, Jang MK, Nah JW. Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Pharm. 319: 130-138 (2006) crossref(new window)

22.
Sajomsang W, Gonil P, Ruktanonchai UR, Petchsangsai M, Opanasopit P, Puttipipatkhachorn S. Effects of molecular weight and pyridinium moiety on water-soluble chitosan derivatives for mediated gene delivery. Carbohyd. Polym. 91: 508-517 (2013) crossref(new window)

23.
Chou TC, Fu E, Wu CJ, Yeh JH. Chitosan enhances platelet adhesion and aggregation. Biochem. Bioph. Res. Co. 302: 480-483 (2003) crossref(new window)

24.
Periayah MH, Halim AS, Hussein AR, Saad AZM, Rashid AHA, Noorsal K. In vitro capacity of different grades of chitosan derivatives to induce platelet adhesion and aggregation. Int. J. Biol. Macromol. 52: 244-249 (2013) crossref(new window)

25.
Stoltz JF, Nicolas A. Analytical study of ionized or ionizable groups of platelet membrane. Blut. 38: 103-117 (1979) crossref(new window)

26.
Hajdu I, Bodnár M, Filipcsei G, Hartmann JF, Daróczi L, Zrínyi M, Borbély J. Nanoparticles prepared by self-assembly of chitosan and poly-${\gamma}$-glutamic acid. Colloid Polym. Sci. 286: 343-350 (2008) crossref(new window)

27.
Sonaje K, Chen YJ, Chen HL, Wey SP, Juang JH, Nguyen HN, Hsu CW, Lin KJ, Sung HW. Enteric-coated capsules filled with freeze-dried chitosan/poly (${\gamma}$-glutamic acid) nanoparticles for oral insulin delivery. Biomaterials 31: 3384-3394 (2010) crossref(new window)

28.
Tang DW, Yu SH, Ho YC, Mi FL, Kuo PL, Sung HW. Heparinized chitosan/poly (${\gamma}$-glutamic acid) nanoparticles for multi-functional delivery of fibroblast growth factor and heparin. Biomaterials 31: 9320-9332 (2010) crossref(new window)

29.
Bilan MI, Grachev AA, Ustuzhanina NE, Shashkov AS, Nifantiev NE, Usov AI. Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohyd. Res. 337: 719-730 (2002) crossref(new window)

30.
Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules 13: 1671-1695 (2008) crossref(new window)

31.
Cumashi A, Ushakova NA, Preobrazhenskaya ME, D'Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI, Usov AI, Ustyuzhanina NE, Grachev AA, Sanderson CJ, Kelly M, Rabinovich GA, Iacobelli S, Nifantiev NE. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17: 541-552 (2007)

32.
Nishino T, Yokoyama G, Dobashi K, Fujihara M, Nagumo T. Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kurome and their blood-anticoagulant activities. Carbohyd. Res. 186: 119-129 (1989) crossref(new window)

33.
Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release 73: 255-267 (2001) crossref(new window)

34.
Son DJ, Cho MR, Jin YR, Kim SY, Park YH, Lee SH, Akiba S, Sato T, Yun YP. Antiplatelet effect of green tea catechins: A possible mechanism through arachidonic acid pathway. Prostag. Leukotr. Ess. 71: 25-31 (2004) crossref(new window)

35.
Li C, Mao X, Xu B. Pulsed electric field extraction enhanced anti-coagulant effect of fungal polysaccharide from Jew's Ear (Auricularia auricula). Phytochem. Analysis 24: 36-40 (2013) crossref(new window)

36.
Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science 145: 1310-1312 (1964) crossref(new window)