Advanced SearchSearch Tips
Effects of Combined Chlorine Dioxide Gas Treatment Using Low-Concentration Generating Sticks on the Microbiological Safety and Quality of Paprika during Storage
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effects of Combined Chlorine Dioxide Gas Treatment Using Low-Concentration Generating Sticks on the Microbiological Safety and Quality of Paprika during Storage
Kang, Ji Hoon; Park, Shin Min; Kim, Hyun Gyu; Son, Hyun Jung; Song, Kyoung Ju; Cho, Miae; Kim, Jong Rak; Lee, Jeong Yong; Song, Kyung Bin;
  PDF(new window)
Chlorine dioxide () gas treatment (75 ppmv, 30 min) has been suggested to improve the microbial safety of postharvest paprika in a previous study. Based on these results, in this study, an additional combined treatment using low-concentration gas-generating sticks (3 ppmv) in paprika samples during storage was carried out at and 90% relative humidity to further enhance the quality and reduce the decay rate of paprika for the purpose of lengthy storage. After the combined treatment, the initial populations of total aerobic bacteria as well as yeast and molds in the paprika samples decreased by 3.04 and 2.70 log CFU/g, respectively, compared with those of the control samples, and this microbial inactivation was maintained by the low-concentration gas-generating sticks during storage. In particular, the decay rate of samples with combined treatment was significantly lower than that of the control. Vitamin C content, hardness, and color quality parameters of paprika samples were not altered by treatment, while weight loss of the samples treated with the combined gas was lower than that of the control during storage. These results indicate that the combination of two different gas treatments is effective for retaining the quality of paprika during prolonged storage.
low-concentration gas stick;combined treatment;paprika;storage;quality;
 Cited by
Park HW, Kim SH, Lee SA. 2011. Freshness of paprika packed with PLA films. Korean J Packag Sci Technol 17: 7-11.

Kim HE, Hwang MR, Eom JH, Choi HG, Kang NJ. 2014. Effects of methyl jasmonate on shelf life of paprika. J Agric Life Sci 48: 19-25. crossref(new window)

Choi IL, Yoo TJ, Kim IS, Lee YB, Kang HM. 2011. Effect of non-perforated breathable films on the quality and shelf life of paprika during MA storage in simulated long distance export condition. J Bio-Environ Control 20: 150-155.

Kang JH, Park SM, Kim HG, Son HJ, Song KJ, Cho MA, Kim JR, Lee JY, Song KB. 2015. Gaseous chlorine dioxide treatment to produce high quality paprika for export. J Korean Soc Food Sci Nutr 44: 1072-1078. crossref(new window)

Choi IL, Lee YB, Kim IS, Kang HM. 2012. A comparison of the storability in MA storage and the quality of paprika fruit among cultivars. J Bio-Environ Control 21: 252-260.

Hong HJ, Kim AJ, Park HR, Shin JK. 2013. Changes in physicochemical properties of paprika by intense pulsed light treatment. Korean J Food Sci Technol 45: 339-344. crossref(new window)

Park SH, Kang DH. 2015. Antimicrobial effect of chlorine dioxide gas against foodborne pathogens under differing conditions of relative humidity. LWT-Food Sci Technol 60: 186-191. crossref(new window)

Gomez-Lopez VM, Rajkovic A, Ragaert P, Smigic N, Devlieghere F. 2009. Chlorine dioxide for minimally processed produce preservation: a review. Trends Food Sci Tech 20: 17-26. crossref(new window)

Lee JH, Kwak YS. 2013. The microflora and pathogenicity investigation related paprika postharvest disease. J Agric Life Sci 47: 55-60.

Guo Q, Wu B, Peng X, Wang J, Li Q, Jin J, Ha Y. 2014. Effects of chlorine dioxide treatment on respiration rate and ethylene synthesis of postharvest tomato fruit. Postharvest Biol Tec 93: 9-14. crossref(new window)