JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Conserved Regions in Mitochondrial Genome Sequences of Small Mammals in Korea
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Conserved Regions in Mitochondrial Genome Sequences of Small Mammals in Korea
Kim, Hye Ri; Park, Yung Chul;
  PDF(new window)
 Abstract
Comparative sequence analyses were conducted on complete mtDNA sequences from four small mammal species in Korea and revealed the presence of 30 well conserved sequences in various regions of the complete mtDNA sequences. The conserved sequences were found in 9 regions in protein coding genes, 10 regions in tRNA genes, 10 in rRNA genes, one region in replication origin and 2 regions in D loop. They could be used to design primers for amplifying complete mtDNA sequences of small mammals.
 Keywords
complete mtDNA;small mammal;conserved sequences;sequence analyses;mitochondrial genome;
 Language
English
 Cited by
 References
1.
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3: 294-299.

2.
Hebert PD, Cywinska A, Ball SL, deWaard JR. 2003a. Biological identifications through DNA barcodes. Proc Biol Sci 270: 313-321. crossref(new window)

3.
Hebert PD, Ratnasingham S, deWaard JR. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270 Suppl 1: S96-S99. crossref(new window)

4.
Hebert PD, Penton EH, Burns JM, Janzen DH, Hallwachs W. 2004a. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci U S A 101: 14812-14817. crossref(new window)

5.
Hebert PD, Stoeckle MY, Zemlak TS, Francis CM. 2004b. Identification of Birds through DNA Barcodes. PLoS Biol 2: e312. crossref(new window)

6.
Kim HR, Park YC. 2011. The complete mitochondrial genome of the Korean field mouse Apodemus peninsulae (Rodentia, Murinae) from Korea. Mitochondrial DNA 22: 97-98.

7.
Janke A, Arnason U. 1997. The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles). Mol Biol Evol 14: 1266-1272. crossref(new window)

8.
Kim HR, Park YC. 2012a. The complete mitochondrial genome of the Korean red-backed vole, Myodes regulus (Rodentia, Murinae) from Korea. Mitochondrial DNA 23: 148-150. crossref(new window)

9.
Kim HR, Park YC. 2012b. The complete mitochondrial genome of the striped field mouse, Apodemus agrarius (Rodentia, Murinae) from Korea. Mitochondrial DNA 23: 145-147. crossref(new window)

10.
Kim KS, Lee SE, Jeong HW, Ha JH. 1998. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome. Mol Phylogenet Evol 10: 210-220. crossref(new window)

11.
Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 86: 6196-6200. crossref(new window)

12.
Kwon YS, Kim JH, Choe JC, Park YC. 2012. Low resolution of mitochondrial COI barcodes for identifying species of the genus Larus (Charadriiformes: Laridae). Mitochondrial DNA 23: 157-166. crossref(new window)

13.
Murphy NP, Framenau VW, Donnellan SC, Harvey MS, Park YC, Austin AD. 2006. Phylogenetic reconstruction of the wolf spiders (Araneae: Lycosidae) using sequences from the 12S rRNA, 28S rRNA, and NADH1 genes: implications for classification, biogeography, and the evolution of web building behavior. Mol Phylogenet Evol 38: 583-602. crossref(new window)

14.
Nikaido M, Harada M, Cao Y, Hasegawa M, Okada N. 2000. Monophyletic origin of the order chiroptera and its phylogenetic position among mammalia, as inferred from the complete sequence of the mitochondrial DNA of a Japanese megabat, the Ryukyu flying fox (Pteropus dasymallus). J Mol Evol 51: 318-328.

15.
Noller HF, Stolk BJV, Moazed D, Douthwatte S, Gutell RR. 1985. Studies on the structure and function of 16S ribosomal RNA using structure-specific chemical probes. Proc Int Symp Biomol Struct Interactions, Suppl J Biosci 8:747-755.

16.
Pacheco MA, Battistuzzi FU, Lentino M, Aguilar RF, Kumar S, Escalante AA. 2011. Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol Biol Evol 28: 1927-1942. crossref(new window)

17.
Phillips MJ, Penny D. 2003. The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet Evol 28: 171-185. crossref(new window)

18.
Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP.1999. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12: 105-114. crossref(new window)

19.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882. crossref(new window)

20.
Tobe SS, Kitchener AC, Linacre AM. 2010. Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome B and cytochrome oxidase subunit I mitochondrial genes. PLoS One 5: e14156. crossref(new window)

21.
Tzeng CS, Hui CF, Shen SC, Huang PC. 1992. The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res 20: 4853-4858. crossref(new window)

22.
Yoon KB, Kim JY, Cho JY, Park YC. 2011. The complete mitochondrial genome of the greater horseshoe bat subspecies, Rhinolophus ferrumequinum korai (Chiroptera: Rhinolophidae). Mitochondrial DNA 22: 102-104. crossref(new window)