Advanced SearchSearch Tips
Fabrication of NiO-Y:BaZrO3 Composite Anode for Thin Film-Protonic Ceramic Fuel Cells using Tape-Casting
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of NiO-Y:BaZrO3 Composite Anode for Thin Film-Protonic Ceramic Fuel Cells using Tape-Casting
Bae, Kiho; Noh, Ho-Sung; Jang, Dong Young; Kim, Manjin; Kim, Hyun Joong; Hong, Jongsup; Lee, Jong-Ho; Kim, Byung-Kook; Son, Ji-Won; Shim, Joon Hyung;
  PDF(new window)
Optimization of the fabrication process of NiO-yttrium doped barium zirconate (BZY) composite anode substrates using tape-casting for high performance thin-film protonic ceramic fuel cells (PCFCs) is investigated. The anode substrate is composed of a tens of microns-thick anode functional layer laminated over a porous anode substrate. The macro-pore structure of the anode support is induced by micron-scale polymethyl methacrylate (PMMA) pore formers. Thermal gravity analysis (TGA) and a dilatometer are used to determine the polymeric additive burn-out and sintering temperatures. Crystallinity and microstructure of the tape-cast NiO-BZY anode are analyzed after the sintering.
NiO-BZY;Protonic ceramic fuel cells;Composite anode supports;Tape-casting;
 Cited by
High-performance thin-film protonic ceramic fuel cells fabricated on anode supports with a non-proton-conducting ceramic matrix, Journal of Materials Chemistry A, 2016, 4, 17, 6395  crossref(new windwow)
B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001). crossref(new window)

E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). crossref(new window)

S. C. Singhal, "Solid Oxide Fuel Cells : Designs, Materials, and Applications," J. Korean Ceram. Soc., 42 [12] 777-86 (2005). crossref(new window)

R. J. Gorte, S. Park, J. M. Vohs, and C. Wang, "Anodes for Direct Oxidation of Dry Hydrocarbons in a Solid-oxide Fuel Cell," Adv. Mater., 12 [19] 1465-69 (2000). crossref(new window)

Z. Shao, S. M. Haile, J. Ahn, P. D. Ronney, Z. Zhan, and S. A. Barnett, "A Thermally Self-sustained Micro Solid-oxide Fuel-cell Stack with High Power Density," Nature, 435 [7043] 795-98 (2005). crossref(new window)

H. Yokokawa, T. Horita, K. Yamaji, H. Kishimoto, and M. E. Brito, "Degradation of SOFC Cell/Stack Performance in Relation to Materials Deterioration," J. Korean Ceram. Soc., 49 [1] 11-8 (2012). crossref(new window)

K. Park, S. Yu, J. Bae, H. Kim, and Y. Ko, "Fast Performance Degradation of SOFC Caused by Cathode Delamination in Long-term Testing," Int. J. Hydrogen Energ., 35 [16] 8670-77 (2010). crossref(new window)

Y.-S. Chou and J. W. Stevenson, "Thermal Cycling and Degradation Mechanisms of Compressive Mica-based Seals for Solid Oxide Fuel Cells," J. Power Sources, 112 [2] 376- 83 (2002). crossref(new window)

H.-S. Noh, J.-W. Son, H. Lee, H.-R. Kim, J.-H. Lee, and H.- W. Lee, "Thin Film $(La_{0.7}Sr_{0.3})_{0.95}MnO_{3-{\delta}}$ Fabricated by Pulsed Laser Deposition and Its Application as a Solid Oxide Fuel Cell Cathode for Low-temperature Operation," J. Korean Ceram. Soc., 47 [1] 75-81 (2010). crossref(new window)

H.-S. Noh, J.-W. Son, H. Lee, H.-S. Song, H.-W. Lee, and J.- H. Lee, "Low Temperature Performance Improvement of SOFC with Thin Film Electrolyte and Electrodes Fabricated by Pulsed Laser Deposition," J. Electrochem. Soc., 156 [12] B1484-90 (2009). crossref(new window)

H.-S. Noh, J.-W. Son, H. Lee, H.-I. Ji, J.-H. Lee, and H.-W. Lee, "Suppression of Ni Agglomeration in PLD Fabricated Ni-YSZ Composite for Surface Modification of SOFC Anode," J. Eur. Ceram. Soc., 30 [16] 3415-23 (2010). crossref(new window)

Y. J. Leng, S. H. Chan, K. A. Khor, and S. P. Jiang, "Performance Evaluation of Anode-supported Solid Oxide Fuel Cells with Thin Film YSZ Electrolyte," Int. J. Hydrogen Energ., 29 [10] 1025-33 (2004). crossref(new window)

A. Leonide, V. Sonn, A. Weber, and E. Ivers-Tiffee, "Evaluation and Modeling of the Cell Resistance in Anode-Supported Solid Oxide Fuel Cells," J. Electrochem. Soc., 155 [1] B36-41 (2008). crossref(new window)

J. H. Shim, C. C. Chao, H. Huang, and F. B. Prinz, "Atomic Layer Deposition of Yttria-stabilized Zirconia for Solid Oxide Fuel Cells," Chem. Mater., 19 [15] 3850-54 (2007). crossref(new window)

A. Evans, A. Bieberle-Hütter, J. L. M. Rupp, and L. J. Gauckler, "Review on Microfabricated Micro-solid Oxide Fuel Cell Membranes," J. Power Sources, 194 [1] 119-29 (2009). crossref(new window)

K. Bae, D. Y. Jang, H. J. Jung, J. W. Kim, J. W. Son, and J. H. Shim, "Micro Ceramic Fuel Cells with Multilayered Yttrium-doped Barium Cerate and Zirconate Thin Film Electrolytes," J. Power Sources, 248 1163-69 (2014). crossref(new window)

S. Primdahl and M. Mogensen, "Oxidation of Hydrogen on Ni/Yttria-Stabilized Zirconia Cermet Anodes," J. Electrochem. Soc., 144 [10] 3409-19 (1997). crossref(new window)

H. Iwahara, "Proton Conducting Ceramics and Their Applications," Solid State Ionics, 86-8 9-15 (1996). crossref(new window)

H. G. Bohn and T. Schober, "Electrical Conductivity of the High-temperature Proton Conductor BaZr(0.9)Y(0.1)O(2.95)," J. Am. Ceram. Soc., 83 [4] 768-72 (2000).

K. D. Kreuer, "Proton-conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003). crossref(new window)

S.-J. Song, E. D. Wachsman, S. E. Dorris, and U. Balachandran, "Defect Chemistry Modeling of High-temperature Proton- conducting Cerates," Solid State Ionics, 149 [1-2] 1-10 (2002). crossref(new window)

T. Schober, W. Schilling, and H. Wenzl, "Defect Model of Proton Insertion into Oxides," Solid State Ionics, 86-88 Part 1 653-58 (1996). crossref(new window)

H. I. Ji, B. K. Kim, J. H. Yu, S. M. Choi, H. R. Kim, J. W. Son, H. W. Lee, and J. H. Lee, "Three Dimensional Representations of Partial Ionic and Electronic Conductivity Based on Defect Structure Analysis of BaZr0.85Y0.15O3- delta," Solid State Ionics, 203 [1] 9-17 (2011). crossref(new window)

K. H. Ryu and S. M. Haile, "Chemical Stability and Proton Conductivity of Doped $BaCeO_3-BaZrO_3$ Solid Solutions," Solid State Ionics, 125 [1-4] 355-67 (1999). crossref(new window)

S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, L. Malavasi, and R. Gerbasi, "High Conductivity and Chemical Stability of $BaCe_{1-x-y}Zr_xY_yO_{3-{\delta}}$ Proton Conductors Prepared by a Sol-gel Method," J. Mater. Chem., 18 [42] 5120-28 (2008). crossref(new window)

C. W. Kwon, J. W. Son, J. H. Lee, H. M. Kim, H. W. Lee, and K. B. Kim, "High-performance Micro-solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates," Adv. Funct. Mater., 21 [6] 1154-59 (2011). crossref(new window)

A. Mukherjee, B. Maiti, A. Das Sharma, R. N. Basu, and H. S. Maiti, "Correlation between Slurry Rheology, Green Density and Sintered Density of Tape Cast Yttria Stabilised Zirconia," Ceram. Int., 27 [7] 731-39 (2001). crossref(new window)

H. Moon, S. D. Kim, S. H. Hyun, and H. S. Kim, "Development of IT-SOFC Unit Cells with Anode-supported Thin Electrolytes via Tape Casting and Co-firing," Int. J. Hydrogen Energ., 33 [6] 1758-68 (2008). crossref(new window)

X. Huang and W. J. Brittain, "Synthesis and Characterization of PMMA Nanocomposites by Suspension and Emulsion Polymerization," Macromolecules, 34 [10] 3255-60 (2001). crossref(new window)

P. Babilo, T. Uda, and S. M. Haile, "Processing of Yttriumdoped Barium Zirconate for High Proton Conductivity," J. Mater. Res., 22 [5] 1322-30 (2007). crossref(new window)

P. Babilo and S. M. Haile, "Enhanced Sintering of Yttriumdoped Barium Zirconate by Addition of ZnO," J. Am. Ceram. Soc., 88 [9] 2362-68 (2005). crossref(new window)

F. F. Lange, "Constrained Network Model for Predicting Densification Behavior of Composite Powders," J. Mater. Res., 2 [01] 59-65 (1987). crossref(new window)

K. Bae, D. Y. Jang, H.-S. Noh, H. J. Kim, J. Hong, K. J. Yoon, B.-K. Kim, J.-W. Son, and J. H. Shim, "High-performance Protonic Ceramic Fuel Cells with Thin-film Yttriumdoped Barium Zirconate Electrolyte and Nickel Oxide- Yttrium-doped Barium Zirconate Interlayers," Adv. Energy Mater., submitted.