Advanced SearchSearch Tips
Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study
Kwon, Hyunguk; Park, Jinwoo; Kim, Byung-Kook; Han, Jeong Woo;
  PDF(new window)
(B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.
Solid oxide fuel cell cathode;Oxide ion transport;Oxygen vacancy formation;Oxygen vacancy migration;Density functional theory;
 Cited by
N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993). crossref(new window)

B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001). crossref(new window)

S. M. Haile, "Fuel Cell Materials and Components," Acta Mater., 51 [19] 5981-6000 (2003). crossref(new window)

E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). crossref(new window)

M. M. Kuklja, E. A. Kotomin, R. Merkle, Y. A. Mastrikov, and J. Maier, "Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells," Phys. Chem. Chem. Phys., 15 [15] 5443-71 (2013). crossref(new window)

Y. A. Mastrikov, M. M. Kuklja, E. A. Kotomin, and J. Maier, "First-principles Modelling of Complex Perovskite $(Ba_{1-x}Sr_x)(Co_{1-y}Fe_y)O_{3-{\delta}}$ for Solid Oxide Fuel Cell and Gas Separation Membrane Applications," Energy Environ. Sci., 3 [10] 1544-50 (2010). crossref(new window)

A. B. Munoz-Garcia, D. E. Bugaris, M. Pavone, J. P. Hodges, A. Huq, F. Chen, H. -C. zur Loye, and E. A. Carter, "Unveiling Structure-property Relationships in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-{\delta}}$, an Electrode Material for Symmetric Solid Oxide Fuel Cells," J. Am. Chem. Soc., 134 [15] 6826-33 (2012). crossref(new window)

Z. Wang, R. Peng, W. Zhang, X. Wu, C. Xia, and Y. Lu, "Oxygen Reduction and Transport on the $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$ Cathode in Solid Oxide Fuel Cells: A First-principles Study," J. Mater. Chem. A, 1 [41] 12932-40 (2013). crossref(new window)

S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chem. Rev., 104 4791-844 (2004). crossref(new window)

S. B. Adler, "Electrode Kinetics of Porous Mixed-conducting Oxygen Electrodes," J. Electrochem. Soc., 143 [11] 3554 (1996). crossref(new window)

S. B. Adler, "Mechanism and Kinetics of Oxygen Reduction on Porous $La_{1-x}Sr_xCoO_{3-{\delta}}$ Electrodes," Solid State Ionics, 111 [1-2] 125-34 (1998). crossref(new window)

S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H. Y. Jeong, Y. -M. Choi, G. Kim, and M. Liu, "Highly Efficient and Robust Cathode Materials for Lowtemperature Solid Oxide Fuel Cells: $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_xO_{5+{\delta}}$," Sci. Rep., 3 (2013).

S. Bao, C. Ma, G. Chen, X. Xu, E. Enriquez, C. Chen, Y. Zhang, J. L. Bettis Jr., M. -H. Whangbo, C. Dong, and Q. Zhang, "Ultrafast Atomic Layer-by-layer Oxygen Vacancyexchange Diffusion in Double-perovskite $LnBaCo_2O_{5.5+{\delta}}$ Thin Films," Sci. Rep., 4 4726 (2014).

C. N. Munnings, S. J. Skinner, G. Amow, P. S. Whitfield, and I. J. Davidson, "Oxygen Transport in the $La_2Ni_{1-x}Co_xO_{4+{\delta}}$ System," Solid State Ionics, 176 [23-24] 1895-901 (2005). crossref(new window)

E. Boehm, J. -M. Bassat, P. Dordor, F. Mauvy, J. -C. Grenier, and Ph. Stevens, "Oxygen Diffusion and Transport Properties in Non-stoichiometric $Ln_{2-x}NiO_{4+{\delta}}$ Oxides," Solid State Ionics, 176 [37-38] 2717-25 (2005). crossref(new window)

J. W. Han and B. Yildiz, "Enhanced One Dimensional Mobility of Oxygen on Strained $LaCoO_3$(001) Surface," J. Mater. Chem., 21 [47] 18983 (2011). crossref(new window)

H. Jalili, J. W. Han, Y. Kuru, Z. Cai, and B. Yildiz, "New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of $La_{0.7}Sr_{0.3}MnO_3$," J. Phys. Chem. Lett., 2 [7] 801-7 (2011). crossref(new window)

Z. Cai, Y. Kuru, J. W. Han, Y. Chen, and B. Yildiz, "Surface Electronic Structure Transitions at High Temperature on Perovskite Oxides: The Case of Strained $La_{0.8}Sr_{0.2}CoO_3$ Thin Films," J. Am. Chem. Soc., 133 [44] 17696-704 (2011). crossref(new window)

M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, and J. Fleig, "Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in $La_{1-x}Sr_xCoO_{3-{\delta}}$ Thin Films," ACS Nano, 7 [4] 3276-86 (2013). crossref(new window)

J. L. M. Rupp, E. Fabbri, D. Marrocchelli, J. W. Han, D. Chen, E. Traversa, H. L. Tuller, and B. Yildiz, "Scalable Oxygen-ion Transport Kinetics in Metal-oxide Films: Impact of Thermally Induced Lattice Compaction in Acceptor Doped Ceria Films," Adv. Funct. Mater., 24 [11] 1562-74 (2014). crossref(new window)

X. Yue, A. Yan, M. Zhang, L. Liu, Y. Dong, and M. Chen, "Investigation on Scandium-Doped Manganate $La_{0.8}Sr_{0.2}Mn_{1-x}Sc_xO_{3-{\delta}}$ Cathode for Intermediate Temperature Solid Oxide Fuel Cells," J. Power Sources, 185 [2] 691-97 (2008). crossref(new window)

V. Dusastre and J. A. Kilner, "Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications," Solid State Ionics, 126 [1-2] 163-74 (1999). crossref(new window)

B. C. H. Steele, "Survey of Materials Selection for Ceramic Fuel Cells II. Cathodes and Anodes," Solid State Ionics, 86-88 1223-34 (1996). crossref(new window)

H. L. Tuller, "Semiconduction and Mixed Ionic-electronic Conduction in Nonstoichiometric Oxides: Impact and Control," Solid State Ionics, 94 [1-4] 63-74 (1997). crossref(new window)

M. Cherry, M. S. Islam, and C. R. A. Catlow, "Oxygen Ion Migration in Perovskite-type Oxides," J. Solid State Chem., 118 [1] 125-32 (1995). crossref(new window)

A. M. Ritzmann, A. B. Muñoz-García, M. Pavone, J. A. Keith, and E. A. Carter, "Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in $La_{1-x}Sr_xFeO_{3-{\delta}}$ (x = 0, 0.25, 0.50)," Chem. Mater., 25 [15] 3011-19 (2013). crossref(new window)

A. B. Munoz-Garcia, M. Pavone, A. M. Ritzmann, and E. A. Carter, "Oxide Ion Transport in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-{\delta}}$, A Mixed Ion-electron Conductor: New Insights from First Principles Modeling," Phys. Chem. Chem. Phys., 15 [17] 6250-59 (2013). crossref(new window)

A. B. Munoz-Garcia, A. M. Ritzmann, M. Pavone, J. A. Keith, and E. A. Carter, "Oxygen Transport in Perovskitetype Solid Oxide Fuel Cell Materials: Insights from Quantum Mechanics," Acc. Chem. Res., 47 [11] 3340-48 (2014). crossref(new window)

G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996). crossref(new window)

G. Kresse and J. Furthmüller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). crossref(new window)

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996). crossref(new window)

E. A. Carter, "Challenges in Modeling Materials Properties without Experimental Input," Science, 321 [5890] 800-3 (2008). crossref(new window)

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-energy-loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505-9 (1998). crossref(new window)

L. Wang, T. Maxisch, and G. Ceder, "Oxidation Energies of Transition Metal Oxides within the GGA+U Framework," Phys. Rev. B, 73 [19] 195107 (2006). crossref(new window)

H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976). crossref(new window)

Y. -L. Lee and D. Morgan, "Ab Initio Defect Energetics of Perovskite (001) Surfaces for Solid Oxide Fuel Cells: A Comparative Study of $LaMnO_3$ versus $SrTiO_3$ and $LaAlO_3$," Phys. Rev. B, 91 [19] 195430 (2015). crossref(new window)

T. Mayeshiba and D. Morgan, "Strain Effects on Oxygen Migration in Perovskites," Phys. Chem. Chem. Phys., 17 [4] 2715-21 (2015). crossref(new window)

Y. -L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, and D. Morgan, "Prediction of Solid Oxide Fuel Cell Cathode Activity with First-principles Descriptors," Energy Environ. Sci., 4 [10] 3966-70 (2011). crossref(new window)

J. Ko, H. Kwon, H. Kang, B. -K. Kim, and J. W. Han, "Universality in Surface Mixing Rule of Adsorption Strength for Small Adsorbates on Binary Transition Metal Alloys," Phys. Chem. Chem. Phys., 17 [5] 3123-30 (2015). crossref(new window)

M. Pavone, A. M. Ritzmann, and E. A. Carter, "Quantummechanics- based Design Principles for Solid Oxide Fuel Cell Cathode Materials," Energy Environ. Sci., 4 [12] 4933- 37 (2011). crossref(new window)

A. M. Deml, V. Stevanović, C. L. Muhich, C. B. Musgrave, and O'Hayre "Oxide Enthalpy of Formation and Band Gap Energy as Accurate Descriptors of Oxygen Vacancy Formation Energetics," Energy Environ. Sci., 7 [6] 1996-2004 (2014). crossref(new window)

G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901 (2000). crossref(new window)

D. Sheppard, R. Terrell, and G. Henkelman, "Optimization Methods for Finding Minimum Energy Paths," J. Chem. Phys., 128 [13] 134106 (2008). crossref(new window)

J. W. Han and B. Yildiz, "Mechanism for Enhanced Oxygen Reduction Kinetics at the $(La,Sr)CoO_{3-{\delta}}/(La,Sr)_2CoO_{4+{\delta}}$ Hetero- interface," Energy Environ. Sci., 5 [9] 8598-607 (2012). crossref(new window)

J. H. Kuo, H. U. Anderson, and D. M. Sparlin, "Oxidationreduction Behavior of Undoped and Sr-Doped $LaMnO_3$ Nonstoichiometry and Defect Structure," J. Solid State Chem., 83 [1] 52-60 (1989). crossref(new window)

J. Nowotny and M. Rekas, "Defect Chemistry of (La,Sr) $MnO_3$," J. Am. Ceram. Soc., 81 [1] 67-80 (1998).

J. Mizusaki, M. Yoshihiro, S. Yamauchi, and K. Fueki, "Nonstoichiometry and Defect Structure of the Perovskitetype Oxides $La_{1-x}Sr_xFeO_{3-{\delta}}$," J. Solid State Chem., 58 [2] 257-66 (1985). crossref(new window)

J. Mizusaki, Y. Mima, S. Yamauchi, and K. Fueki, "Nonstoichiometry of the Perovskite-type Oxides $La_{1-x}Sr_xCoO_{3-{\delta}}$," J. Solid State Chem., 80 [1] 102-111 (1989). crossref(new window)

Y. -L. Lee, K. Kleis, J. Rossmeisl, and D. Morgan, "Ab Initio Energetics of $LaBO_3$(001) (B = Mn, Fe, Co, and Ni) for Solid Oxide Fuel Cell Cathodes," Phys. Rev. B, 80 [22] 224101 (2009). crossref(new window)

M. S. Islam, "Computer Modelling of Defects and Transport in Perovskite Oxides," Solid State Ionics, 154-155 75-85 (2002). crossref(new window)

A. Jones and M. S. Islam, "Atomic-scale Insight into $LaFeO_3$ Perovskite: Defect Nanoclusters and Ion Migration," J. Phys. Chem. C, 112 [12] 4455-62 (2008). crossref(new window)

J. A. Kilner and R. J. Brook, "A Study of Oxygen Ion Conductivity in Doped Non-stoichiometric Oxides," Solid State Ionics, 6 [3] 237-52 (1982). crossref(new window)

M. S. Islam, "Ionic Transport in $ABO_3$ Perovskite Oxides: A Computer Modelling Tour," J. Mater. Chem., 10 [4] 1027-38 (2000). crossref(new window)

T. Ishigaki, S. Yamauchi, J. Mizusaki, K. Kueki, and H. Tamura, "Tracer Diffusion Coefficient of Oxide Ions in $LaCoO_3$ Single Crystal," J. Solid State Chem., 54 [1] 100-7 (1984). crossref(new window)

T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki, "Diffusion of Oxide Ion Vacancies in Perovskite-type Oxides," J. Solid State Chem., 73 [1] 179-87 (1988). crossref(new window)

S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner, and B. C. H. Steele, "Oxygen Transport in Selected Nonstoichiometric Perovskite-structure Oxides," Solid State Ionics, 53-56 597-605 (1992). crossref(new window)

I. Yasuda and M. Hishinuma, "Electrical Conductivity and Chemical Diffusion Coefficient of Strontium-doped Lanthanum Manganites," J. Solid State Chem., 123 [2] 382-90 (1996). crossref(new window)

Y. A. Mastrikov, R. Merkle, E. A. Kotomin, M. M. Kuklja, and J. Maier, "Formation and Migration of Oxygen Vacancies in $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$ Perovskites: Insight from Ab Initio Calculations and Comparison with $Ba_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$," Phys. Chem. Chem. Phys., 15 [3] 911-18 (2013). crossref(new window)

V. V. Kharton, A. P. Viskup, D. M. Bochkov, E. N. Naumovich, and O. P. Reut, "Mixed Electronic and Ionic Conductivity of $LaCo(M)O_3$ (M = Ga, Cr, Fe or Ni): III. Diffusion of Oxygen through $LaCo_{1-x-y}Fe_xNi_yO_{3{\pm}{\delta}}$ Ceramics," Solid State Ionics, 110 [1-2] 61-68 (1998). crossref(new window)

M. Zinkevich and F. Aldinger, "Thermodynamic Analysis of the Ternary La-Ni-O System," J. Alloys Compd., 375 [1-2] 147-61 (2004). crossref(new window)

E. V. Tsipis, E. A. Kiselev, V. A. Kolotygin, J. C. Waerenborgh, V. A. Cherepanov, and V. V. Kharton, "Mixed Conductivity, Mössbauer Spectra and Thermal Expansion of $(La,Sr)(Fe,Ni)O_{3-{\delta}}$ Perovskites," Solid State Ionics, 179 [38] 2170-80 (2008). crossref(new window)