Advanced SearchSearch Tips
Powder Characteristics of Fly Ash Beneficiated by Cold Plasma and Heat Treatment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Powder Characteristics of Fly Ash Beneficiated by Cold Plasma and Heat Treatment
Lee, Seung-Heun; Cho, Un-Jin; Kwon, Sung-Ku;
  PDF(new window)
Cold plasma and heat treatment were selected as technologies to reduce unburned carbon in fly ash to less than 1.0%. Both cold plasma and heat treatment made it possible to eliminate unburned carbon to less than 1.0%. In the case of fly ash, which almost entirely eliminated unburned carbon with an ignition loss of 0.5%, heat treatment caused adhesion among particles and the BET specific surface area rapidly decreased as the mean particle size increased. On the other hand, with cold plasma, unburned carbon elimination caused the BET specific surface area to decrease and, as no adhesion occurred among particles, the mean particle size became small. Also, cold plasma treatment allowed small spherical particles confined within the unburned carbon particles to be released with the elimination of the unburned carbon frame, so that the quantity of fine particles had a tendency to slightly increase.
Fly ash;Cold plasma;Heat treatment;Unburned carbon;
 Cited by
H. J. Feuerborn and T. Eck, "Coal Combustion Products in Europe - Production, Qualities and Use, Today and Tomorrow," Proceedings of the International Conference Euro Coal Ash 2010, Copenhagen, Denmark, 27-8 May, 2010

S. Nagataki, E. Saka, and T. Takeuchi, "The Fluidity of Fly Ash Cement Paste with Superplasticizer," Cem. Concr. Res., 14 631-38 (1984). crossref(new window)

Y. Kocak and S. Nas, "The Effect of Using Fly Ash on the Strength and Hydration Characteristics of Blended Cements," Constr. Build. Mater., 73 25-32 (2014). crossref(new window)

E. Sakai, S. Miyahara, S. Ohsawa, S. H. Lee, and M. Daimon, "Hydration of Fly Ash Cement," Cem. Concr. Res., 35 1135-40 (2005). crossref(new window)

J. Paya, J. Monzo, E. Peris-Mora, M.V. Borrachero, R. Tercero, and C. Pinillos, "Early-Strength Development of Portland Cement Mortars Containing Air Classified Fly Ashes," Cem. Concr. Res., 25 449-56 (1995). crossref(new window)

J. K. Kim, M. Y. Kim, H. D. Lee, and S. C. Kim, "Performance Test of Semi-Demo Scale Electroseparator for Removing Unburned Carbon from Fly Ash," J. Korea Soc. Waste Manag., 13 [1] 5-10 (2008).

W. Zhang and R. Honaker, "Studies on Carbon Flotation from Fly Ash," Fuel Process. Technol., 139 236-41 (2015). crossref(new window)

J. M. Veranth, T. H. Fletcher, D. W. Pershing, and A. F. Sarofim, "Measurement of Soot and Char in Pulverized Coal Fly Ash," Fuel, 79 1067-75 (2000). crossref(new window)

M. Jalal, A. Pouladkhan, O. F. Harandi, and D. Jafari, "Comparative Study on Effecrs of Class F Fly Ash, Nano Silica and Silica Fume on Properties of High Performance Self Compacting Concrete," Constr. Build. Mater., 94 90-104 (2015). crossref(new window)

S. H. Lee, A. Kawakami, E. Sakai, and M. Daimon, "The Fluidity of Cement Pastes with Fly Ashes Containing a Lot of Carbon," J. Korean Ceram. Soc., 40 [3] 219-24 (2003). crossref(new window)

E. Bormashenko, G. Whyman, V. Multanen, E. Shulzinger, and G. Chaniel, "Physical Mechanism of Interaction of Cold Plasma with Polymer," J. Colloid Inter. Sci., 448 175-79 (2015). crossref(new window)

L. Bai, H. Jin, C. Lu, F. Yuan, S. Huang, and J. Li, "RF Thermal Plasm a-Assisted Metallothermic Synthesis of Ultrafine $ZrB_2$ Powders," Ceram. Int., 41 7312-17 (2015). crossref(new window)

Y. Sakamoto, S. Maeno, N. Tsubouchi, T. Kasuya, and M. Wada, "Comparison of Plasma Parameters in CCP and ICP Processes Appropriate for Carbon Nanotube Growth," J. Plasma Fusion Res., 8 587-90 (2009).