Advanced SearchSearch Tips
Effect of MnO2 Addition on Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 Piezoelectric Ceramics
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of MnO2 Addition on Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 Piezoelectric Ceramics
Kim, Jong-Hyun; Seo, In-Tae; Hur, Joon; Kim, Dae-Hyeon; Nahm, Sahn;
  PDF(new window)
was added to the (NKN-CT) ceramics in order to promote the densification and improve the poling efficiency by increasing the resistance of the specimens. Densification and abnormal grain growth occurred in the -added NKN-CT ceramics sintered at , indicating that assisted the liquid-phase sintering of these materials. ions were considered to enter the A-site of the matrix, thereby producing the free electrons, which interacted with the holes resulting from the evaporation of alkali ions. This interaction results in an increase in the resistance of the specimens. The increased resistance improved the poling efficiency and, hence, the dielectric and piezoelectric properties of the NKN-CT ceramics. A few of the ions that entered the B-site of the NKN-CT matrix led to a slight increase in the mechanical quality factor.
Ceramics;Sintering;Piezoelectricity;X-ray diffraction;
 Cited by
Nonstoichiometric Effects in the Leakage Current and Electrical Properties of Bismuth Ferrite Ceramics, Journal of the Korean Ceramic Society, 2017, 54, 4, 323  crossref(new windwow)
B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics; pp.271, Academic, New York, 1971.

Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 84-7 (2004). crossref(new window)

Y. Makiuchi, R. Aoyagi, Y. Hiruma, H. Nagata and T. Takenaka, "($Bi_{1/2}Na_{1/2}$)$TiO_3$-($Bi_{1/2}K_{1/2}$)$TiO_3$-$BaTiO_3$-Based Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 44 [6B] 4350-53 (2005). crossref(new window)

J. F. Li, K. Wang, F. Y. Zhu, L. Q. Cheng, and F. Z. Yao, "(K,Na)$NbO_3$-Based Lead-Free Piezoceramics: Fundamental Aspects, Processing Technologies, and Remaining Challenges," J. Am. Ceram. Soc., 96 [12] 3677-96 (2013). crossref(new window)

J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). crossref(new window)

J. Fu, R. Zuo, X. Fang, and K. Liu, "Lead-Free Ceramics Based on Alkaline Niobate Tantalate Antimonate With Excellent Dielectric and Piezoelectric Properties," Mater. Res. Bull., 44 [5] 1188-90 (2009). crossref(new window)

P. Jarupoom, K. Pengpat, S. Eitssayeam, U. Intatha, G. Rujijanagul, and T. Tunkasiri, "Structures and Properties of Lead-Free NKN Piezoelectric Ceramics," Ferrolectrics. Lett., 35 119-27 (2009).

L. Egerton and D. M. Dillon, "Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate," J. Am. Ceram. Soc., 42 [9] 438-42 (1959). crossref(new window)

H. J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, and M. Kuball, "Raman Spectroscopy of (K,Na)$NbO_3$ and $(K,Na)_{1-x}Li_xNbO_3$," Appl. Phys. Lett., 93 [26] 262901 (2008). crossref(new window)

R. Zuo and J. Fu, "Rhombohedral-Tetragonal Phase Coexistence and Piezoelectric Properties of (Na,K)(Nb,Sb)$O_3$-$LiTaO_3$-$BaZrO_3$ Lead-Free Ceramics," J. Am. Ceram. Soc., 94 [5] 1467-70 (2011). crossref(new window)

X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, and X. Wang, "Giant Piezoelectricity in Potassium-Sodium Niobate Lead-Free Ceramics," J. Am. Chem. Soc., 136 [7] 2905-10 (2014). crossref(new window)

B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, and X. Lou, "Lead-Free Piezoelectrics Based on Potassium-Sodium Niobate with Giant $d_{33}$," ACS Appl. Mater. Interfaces., 5 [16] 7718-25 (2013). crossref(new window)

H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, and D. H. Kim, "Microstructure and Piezoelectric Properties of Lead-Free (1-x)($Na_{0.5}K_{0.5}$)$NbO_3$-xCa$TiO_3$ Ceramics," J. Appl. Phys., 102 [12] 124101 (2007). crossref(new window)

S. J. Park, H. Y. Park, K. H. Cho, S. Nahm, H. G. Lee, D. H. Kim, and B. H. Choi, "Effect of CuO on the Sintering Temperature and Piezoelectric Properties of Lead-Free 0.95($K_{0.5}Na_{0.5}$)$NbO_3$-0.05Ca$TiO_3$ Ceramics," Mater. Res. Bull., 43 [12] 3580-86 (2008). crossref(new window)

Murata Manufacturing Co., Ltd., "No. P19E-6," Murata Manufacturing Co., Ltd, Kyoto, 2005.

D. Lin, K.W. Kwok and H.L.W. Chan, "Effects of $MnO_2$ on the Microstructure and Electrical Properties of 0.94($K_{0.5}Na_{0.5}$)$NbO_3$-0.06Ba($Zr_{0.05}Ti_{0.95}$)$O_3$ Lead-Free Ceramics," Mater Chem Phys., 109 455-8 (2008). crossref(new window)

H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, and S. Nahm, "Microstructure and Piezoelectric Properties of 0.95($Na_{0.5}K_{0.5}$)$NbO_3$-0.05$BaTiO_3$0.95($Na_{0.5}K_{0.5}$)$NbO_3$-0.05$BaTiO_3$ Ceramics," Appl. Phys. Lett., 89 [6] 062906 (2006). crossref(new window)

H. C. Song, K. H. Cho, H. Y. Park, C. W. Ahn, S. Nahm, K. Uchino, and H. G. Lee, "Microstructure and Piezoelectric Properties of (1-x)($Na_{0.5}K_{0.5}$)$NbO_3$-xLi$NbO_3$ Ceramics," J. Am. Ceram. Soc., 90 [6] 1812-16 (2007). crossref(new window)

S. Priya and S. Nahm, Lead-Free Piezoelectrics; Ch. 4, Springer, New York, 2012.

J. H. Ahn, J. H. Lee, S. H. Hong, N. M. Hwang and D. Y. Kim, "Effect of the Liquid-Forming Additive Content on the Kinetics of Abnormal Grain Growth in Alumina," J. Am. Ceram. Soc., 86 [8] 1421-23 (2003). crossref(new window)