JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Improved Temperature Stability in Dielectric Properties of 0.8BaTiO3-(0.2-x)NaNbO3-xBi(Mg1/2Ti1/2)O3 Relaxors
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Improved Temperature Stability in Dielectric Properties of 0.8BaTiO3-(0.2-x)NaNbO3-xBi(Mg1/2Ti1/2)O3 Relaxors
Goh, Yumin; Kim, Baek-Hyun; Bae, Hyunjeong; Kwon, Do-Kyun;
  PDF(new window)
 Abstract
Ferroelectric relaxor ceramics with ternary compositions (BT-NN-BMT) have been prepared by sol-gel powder synthesis and consequent bulk ceramic processing. Through the modified chemical approach, fine and single-phase complex perovskite compositions were successfully obtained. Temperature and frequency dependent dielectric properties indicated typical relaxor characteristics of the BT-NN-BMT compositions. The ferroelectric-paraelectric phase transition became diffusive when NN and BMT were added to form BT based solid solutions. BMT additions to the BT-NN solid solutions affected the high temperature dielectric properties, which might be attributable to the compositional inhomogeneity of the complex perovskite and resulting weak dielectric coupling of the Bi-containing polar nanoregions (PNRs). The temperature stability of the dielectric properties was good enough to satisfy the X9R specification. The quasi-linear P-E response and the temperature- stable dielectric properties imply the high potential of this ceramic compound for use in high temperature capacitors.
 Keywords
Relaxor;High temperature capacitor;BT-NN-BMT;Perovskite;X9R;
 Language
English
 Cited by
 References
1.
R. Dittmer, W. Jo, D. Damjanovic, and J. Rodel, "Lead-Free High-Temperature Dielectrics with Wide Operational Range," J. Appl. Phys., 109 034107 (2011). crossref(new window)

2.
Z. Liu, X. Chen, W. Peng, C. Xu, X. Dong, F. Cao, and G. Wang, "Temperature-Dependent Stability of Energy Storage Properties of $Pb_{0.97}La_{0.02}(Zr_{0.58}Sn_{0.335}Ti_{0.085})O_3$ Antiferroelectric Ceramics for Pulse Power Capacitors," Appl. Phys. Lett., 106 [26] 262901 (2015). crossref(new window)

3.
H. Lee, J. R. Kim, M. Lanagan, S. Trolier-McKinstry, and C. A. Randall, "High-Energy Density Dielectrics and Capacitors for Elevated Temperatures: Ca(Zr,Ti)$O_3$," J. Am. Ceram. Soc., 96 [4] 1209-13 (2013). crossref(new window)

4.
D. P. Shay, N. J. Podraza, N. J. Bonnelly, and C. A. Randall, "High Energy Density, High Temperature Capacitors Utilizing Mn-Doped $0.8CaTiO_3$-$0.2CaHfO_3$ Ceramics," J. Am. Ceram. Soc., 95 [4] 1348-55 (2012). crossref(new window)

5.
D. Tinberg and S. Trolier-Mckinstry, "Structural and electrical Characterization of $xBiScO_3$-(1-x)$BaTiO_3$," J. Appl. Phys., 101 [2] 4112 (2007).

6.
H. Ogihara, C. Randall, and S. Trolier-Mckinstry, "Weakly, Coupled Relaxor Behavior of $BaTiO_3$-$BiScO_3$ Ceramics," J. Am. Ceram. Soc., 92 [1] 110-18 (2009). crossref(new window)

7.
H. Ogihara, C. Randall, and S. Trolier-Mckinstry, "High-Energy Density Capacitors Utilizing $0.7BaTiO_3$-$0.3BiScO_3$ Ceramics," J. Am. Ceram. Soc., 92 [8] 1719-24 (2009). crossref(new window)

8.
C.-C. Huang and D. Cann, "Phase Transition and Dielectric Properties in Bi$(Zn_{1/2}Ti_{1/2})O_3$-$BaTiO_3$ Perovskite Solid Solutions," J. Appl. Phys., 104 024117 (2008). crossref(new window)

9.
Z. Yu, C. Ang, R. Guo, and A. S. Bhalla, "Ferroelectric-Relaxor Behavior of Ba ($Ti_{0.7}Zr_{0.3}$) $O_3$ Ceramics," J. Appl. Phys., 92 2655-57 (2002). crossref(new window)

10.
A. Chen, Y. Zhi, and J. Zhi, "Impurity-Induced Ferroelectric Relaxor Behavior in Quantum Paraelectric $SrTiO_3$ and Ferroelectric $BaTiO_3$," Phys. Rev. B, 61 [2] 957 (2000). crossref(new window)

11.
J. Zhi, A. Chen, Y. Zhi, P. M. Vilarinho, and J. L. Baptista, "Dielectric Properties of Ba ($Ti_{1-y}Y_y$) $O_3$ Ceramics," J. Appl. Phys., 84 983-86 (1998). crossref(new window)

12.
D. H. Choi, A. Baker, M. Lanagan, S. Trolier-Mckinstry, and C. Randall, "Structural and Dielectric Properties in (1-x)$BaTiO_3$-xBi($Mg_{1/2}Ti_{1/2}$)$O_3$ Ceramics (0.1 ${\leq}$x ${\leq}$0.5) and Potential for High-Voltage Multilayer Capacitors," J. Am. Ceram. Soc., 96 [7] 2197-202 (2013). crossref(new window)

13.
Q. Zhang, Z. Li, F. Li, and Z. Xu, "Structural and Dielectric Properties of Bi($Mg_{1/2}Ti_{1/2}$)$O_3$-$BaTiO_3$ Lead-Free Ceramics," J. Am. Ceram. Soc., 94 [12] 4335-39 (2011). crossref(new window)

14.
D.-K. Kwon and M. H. Lee, "Temperature-Stable High-Energy-Density Capacitors Using Complex Perovskite Thin Films," IEEE Trans. Ultrason. Ferroelectrics Freq. Contr., 59 [9] 1894-99 (2012). crossref(new window)

15.
D.-K. Kwon, Y. Goh, D. Son, B. H. Kim, H. Bae, S. Perini, and M. Lanagan, "Temperature- and Frequency- Dependent Dielectric Properties of Sol-Gel-Derived $BaTiO_3$-$NaNbO_3$ Solid Solutions," J. Electron. Mater., 45 [1] 631-38 (2016). crossref(new window)

16.
C. E. Kim, Y. I. Park, and H. W. Lee, "Preparation of $PbTiO_3$ Fibres Using Triethanolamine-Complexed Alkoxide," J. Mater. Sci. Lett., 16, 96 (1997). crossref(new window)

17.
T. Wang, L. Jin, C. Li, Q. Hu, and X. Wei, "Relaxor Ferroelectric $BaTiO_3$-Bi($Mg_{2/3}Nb_{1/3}$)$O_3$ Ceramics for Energy Storage Application," J. Am. Ceram. Soc., 98 [2] 559-66 (2015). crossref(new window)

18.
A. Zeb and S. J. Milne, "Stability of High Temperature Dielectric Properties for (1-x)$Ba_{0.8}Ca_{0.2}TiO_3$-xBi($Mg_{0.5}Ti_{0.5}$)$O_3$ Ceramics," J. Am. Ceram. Soc., 96 [9] 2887-92 (2013). crossref(new window)

19.
R. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides," Acta Crystallogr. Sect. A: Found. Crystallogr., 32 [5] 751-67 (1976).

20.
C.-H. Lu and Y.-C. Chen, "Sintering and Decomposition of Ferroelectric Layered Perovskites: Strontium Dismuth Tantalate Ceramics," J. Eur. Ceram. Soc., 19 [16] 2909-15 (1999). crossref(new window)

21.
J. Ravez and A. Simon, "Some Solid State Chemistry Aspects of Lead-Free Relaxor Ferroelectrics," J. Solid State Chem., 162 [2] 260-65 (2001). crossref(new window)

22.
A. N. Salak, M. P. Seabra, and V. M. Ferreira, "Evolution from Ferroelectric to Relaxor Behavior in the (1-x)$BaTiO_3$- xLa($Mg_{1/2}Ti_{1/2}$)$O_3$ System," Ferroelectrics, 318 [1] 185-92 (2005). crossref(new window)

23.
J. Wang, Y. Liu, K. Lau, R. L. Withers, Z. Li, and Z. Xu, "Dipolar-Glass-like Relaxor Ferroelectric Behavior in the $0.5BaTiO_3$-0.5Bi($Mg_{1/2}Ti_{1/2}$)$O_3$ Electroceramics," Appl. Phys. Lett., 103 [4] 042910 (2013). crossref(new window)

24.
R. E. Cohen, "Origin of Ferroelectricity in Perovskite Oxides," Nature, 358 [6382] 136-38 (1992). crossref(new window)