Advanced SearchSearch Tips
Trends in Computational Materials Science Based on Density Functional Theory
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Trends in Computational Materials Science Based on Density Functional Theory
Lee, June Gunn;
  PDF(new window)
This review deals with computational treatments of subatomic levels of matter based on density functional theory (DFT), and tries to identify several current trends, which are largely consequences of the ever-increasing power of computers, which has substantially extended the performance of conventional DFT beyond its original scope. This review mainly focuses on the conceptual outline, rather than on lines of equations, highlighting several examples of calculations for each topic. It should be noted that these issues are hardly new to leading groups in the field, but certainly are for materials people in general. It should also be noted that the on-going efforts will continue and lead to a larger system size, a longer time scale, a higher accuracy, and a better efficiency of calculation for years to come.
DFT;Trends;Hybrid functional;+U consideration;ab initio MD;
 Cited by
J. G. Lee, Computational Materials Science: An Introduction (2nd edition), CRC Press, Boca Raton, U. S. A., in preparation.

Top500, Accessed on 16/12/2015.

E. Schrodinger, Quantisierung als Eigenwertproblem; von Erwin Schrodinger, Ann. Physik, 79, 361-377 (1926).

D. R. Hartree, "The Wave Mechanics of an Atom with a Non-Coulomb Central Field, Part I. Theory and Methods," Proc. Camb. Phil. Soc., 24 [1] 89-110 (1928). crossref(new window)

V. Fock, "Naherungsmethode zur Losung des Quantenmechanischen Mehrkorperproblems," Z. Phys., 61 [1] 126-48 and 62, 795 (1930). crossref(new window)

P. Hohenberg and W. Kohn, "Inhomogeneous Electron Gas," Phys. Rev., 136 [3B] B864-71 (1964). crossref(new window)

W. Kohn and L. J. Sham, "Self-consistent Equations including Exchange and Correlation Effects," Phys. Rev., A 140 1133-38 (1965).

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 3865-68 (1996). crossref(new window)

A. Tkatchenko, L. Romaner, O. T. Hofmann, E. Zojer, C. Ambrosch-Draxl, and M. Scheffler, "Van der Waals Interactions between Organic Adsorbates and at Organic/Inorganic Interfaces," MRS Bulletin, 35 435-42 (2010). crossref(new window)

J. Heyd, G. E. Scuseria, and M. Ernzerhof, "Hybrid Functionals Based on a Screened Coulomb Potential," J. Chem. Phys., 118 [18] 8207-15 (2003). and "Erratum: Hybrid Functionals based on a Screened Coulomb Potential," J. Chem. Phys. 124 219906(E) (2006). crossref(new window)

Y. Zhao and D. G. Truhlar, "The M06 Suite of Density Functionals," Theor. Chem. Acc., 120 215-41 (2008). crossref(new window)

L. Hedin, "New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem," Phys. Rev., 139 [3A] A796 (1965). crossref(new window)

W. G. Aulbur, L. Jonsson, and J. W. Wilkins, "Quasiparticle Calculations in Solids," Solid State Phys., 54 1-218 (2000).

M. Shishkin, M. Marsman, and G. Kresse, "Accurate Quasiparticle Spectra from Self-Consistent GW Calculations with Vertex Corrections," Phys. Rev. Lett., 99 [24] 246403 (2007). crossref(new window)

J. Paier, R. Asahi, A. Nagoya, and G. Kresse, "$Cu_2ZnSnS_4$ as a Potential Photovoltaic Material: A Hybrid Hartree-Fock Density Functional Theory Study," Phys. Rev. B, 79 [11] 115126 (2009). crossref(new window)

A. L. M. Miguel, J. Vidal, M. Oliveira, L. Reining, and S. Botti, "Density-based Mixing Parameter for Hybrid Functionals," Phys. Rev. B, 83 [3] 035119 (2010).

F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, "Defect Energetics in ZnO: A Hybrid Hartree-Fock Density Functional Study," Phys. Rev. B, 77 [24] 245202 (2008). crossref(new window)

V. Ivady, R. Armiento, K. Szasz, E. Janzen, A. Gali, and I. A. Abrikosov, "Theoretical Unification of Hybrid-DFT and DFT+U Methods for the Treatment of Localized Orbitals," Phys. Rev. B, 90 [3] 035146 (2014). crossref(new window)

Materials Studio, Accessed on 16/12/2015.

CASTEP (Cambridge Serial Total Energy Package), Accessed on 16/12/2015.

MedeA-VASP, Accessed on 16/12/2015.

Materials Design, Inc. Application Note, Interface Energy of Metal-Ceramic Interface Co-WC using Ab Initio Thermodynamics, 2008.

Materials Project, Accessed on 16/12/2015.

Berkeley Lab, elastic-properties/. Accessed on 16/12/2015.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, "A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (dft-d) for the 94 Elements," J. Chem. Phys., 132 [15] 154104 (2010). crossref(new window)

J. Hubbard, "Electron Correlations in Narrow Energy Bands"; pp.238-57 in Proceedings of the Royal Society of London, 1963.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505 (1998). crossref(new window)

G. Hautier, S. P. Ong, A. Jain, C. J. Moore, and G. Ceder, Accuracy of Density Functional Theory in Predicting Formation Energies of Ternary Oxides from Binary Oxides and Its Implication on Phase Stability, Phys. Rev. B, 85 [15] 155208 (2012). crossref(new window)

R. Car and M. Parrinello, "Unified Approach for Molecular Dynamics and Density-Functional Theory," Phys. Rev. Lett., 55 [15] 2471-74 (1985). crossref(new window)

G. Kresse and J. Hafner, "Ab Initio Molecular-Dynamics Simulation of the Liquid-metal-amorphous-semiconductor Transition in Germanium," Phys. Rev. B, 49 14251-69 (1994). crossref(new window)

E. J. Bylaska1, K. Glass, D. Baxter, S. B. Baden, and J. H. Weare, "Hard Scaling Challenges for Ab Initio Molecular Dynamics Capabilities in NWChem: Using 100,000 CPUs per second," J. Phys. Conf., 180 [1] 012028 (2009).

Materials Design, Application Note, Prediction of Schottky Barrier in Electronic Device, 2013.

V. Eyert, Prediction of Electronic Materials Properties using MedeA, Materials Design Users Group Meeting, Heidelberg, Sep. 2015.

Q. An, A. Jaramillo-Botero, W.-G. Liu, and W. A. Goddard III, "Reaction Pathways of GaN (0001) Growth from Trimethylgallium and Ammonia versus Triethylgallium and Hydrazine Using First Principle Calculations," J. Phys. Chem. C, 119 [8] 4095-103 (2015). crossref(new window)