JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Computational Materials Engineering: Recent Applications of VASP in the MedeA® Software Environment
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Computational Materials Engineering: Recent Applications of VASP in the MedeA® Software Environment
Wimmer, Erich; Christensen, Mikael; Eyert, Volker; Wolf, Walter; Reith, David; Rozanska, Xavier; Freeman, Clive; Saxe, Paul;
  PDF(new window)
 Abstract
Electronic structure calculations have become a powerful foundation for computational materials engineering. Four major factors have enabled this unprecedented evolution, namely (i) the development of density functional theory (DFT), (ii) the creation of highly efficient computer programs to solve the Kohn-Sham equations, (iii) the integration of these programs into productivity-oriented computational environments, and (iv) the phenomenal increase of computing power. In this context, we describe recent applications of the Vienna Ab-initio Simulation Package (VASP) within the MedeA computational environment, which provides interoperability with a comprehensive range of modeling and simulation tools. The focus is on technological applications including microelectronic materials, Li-ion batteries, high-performance ceramics, silicon carbide, and Zr alloys for nuclear power generation. A discussion of current trends including high-throughput calculations concludes this article.
 Keywords
Materials engineering;Computations;ab initio;Applications;
 Language
English
 Cited by
 References
1.
"Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security", Committee on Integrated Computational Materials Engineering, National Research Council (The National Academic Press, Washington, D.C., 2008).

2.
G. Kresse and J. Hafner, "Ab initio Molecular Dynamics for Liquid Metals," Phys. Rev. B, 47 [1] 558 (1993). crossref(new window)

3.
G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169 (1996). crossref(new window)

4.
G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method," Phys. Rev. B, 59 [3] 1758 (1999).

5.
$MedeA^{(R)}$ - Materials Exploration and Design Analysis, Materials Design, Inc., Angel Fire, NM, USA, 2016.

6.
C. L. Hinkle, R. V. Galatage, R. A. Chapman, E. M. Vogel, H. N. Alshareef, C. Freeman, E. Wimmer, H, Niimi, A. Li- Fatou, J. B. Shaw, and J. J. Chambers, "Interfacial Oxygen and Nitrogen Induced Dipole Formation and Vacancy Passivation for Increased Effective Work Functions in TiN/ $HfO_2$ Gate Stacks," Appl. Phys. Lett., 96 103502 (2010). crossref(new window)

7.
P. Piekarz, P. T. Jochym, K. Parlinski, and J. Lazewski, "High-Pressure and Thermal Properties of g-$Mg_2SiO_4$ from First-Principles Calculations," J. Chem. Phys., 117 [7] 3340-44 (2002). crossref(new window)

8.
K. Parlinski, Z. Q. Li, and Y. Kawazoe, "First-Principles Determination of the Soft Mode in Cubic $ZrO_2$," Phys. Rev. Lett., 78 [21] 4063 (1997). crossref(new window)

9.
F. Rosciano, M. Christensen, V. Eyert A. Mavromaras, and E. Wimmer, "Reduced Strain Cathode Materials for Solid State Lithium Ion Batteries", International Patent Publication Number WO2014191018 A1 (December 4, 2014).

10.
J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple", Phys. Rev. Lett., 77, 3865 (1996); and "Erratum" Phys. Rev. Lett. 78, 1396 (1997). crossref(new window)

11.
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, "Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces," Phys. Rev. Lett., 100 136406 (2008). and "Erratum," Phys. Rev. Lett., 102 039902 (2009). crossref(new window)

12.
R. P. Elliott, "The Boron-Carbon System," IIT Research Institute, Armour Res. Found. (U.S. Atomic Energy Commission, Chicago, IL, June 7, 1961).

13.
H. K. Clark and J. L. Hoard, "The Crystal Structure of Boron Carbide," J. Am. Chem. Soc., 65 [11] 2115-19 (1943). crossref(new window)

14.
A. C. Larson, "Comments Concerning the Crystal Structure of $B_4C$"; pp. 109-13 in AIP Conference Proceedings, Albuquergue, NM, USA, 1986.

15.
D. Lerch, O. Wieckhorst, G. L. W. Hart, R. W. Forcade, and S. Muller, "UNCLE: A Code for Constructing Cluster Expansions for Arbitrary Lattices with Minimal User-Input," Modell. Simul. Mater. Sci. Eng., 17 [5] 055003 (2009). crossref(new window)

16.
F. Mauri, N. Vast, and C. J. Pickard, "Atomic Structure of Icosahedral B4C Boron Carbide from a First Principles Analysis of NMR Spectra," Phys. Rev. Lett., 87 [8] 085506 (2001). crossref(new window)

17.
Y. Le Page and P. Saxe, "Symmetry-General Least-Squares Extraction of Elastic Data for Strained Materials from ab initio Calculations of Stress," Phys. Rev. B, 65 [10] 104104 (2002). crossref(new window)

18.
R. Lazzari, N. Vast, J. M. Besson, S. Baroni, and A. Dal Corso, "Atomic Structure and Vibrational Properties of Icosahedral $B_4C$ Boron Carbide," Phys. Rev. Lett., 83 3230 (1999). and "Erratum," Phys. Rev. Lett., 85 4194 (2000). crossref(new window)

19.
J. Heyd, G. E. Scuseria, and M. Ernzerhof, "Hybrid functionals Based on a Screened Coulomb Potential," J. Chem. Phys., 118 8207 (2003). and "Erratum," J. Chem. Phys., 124 219906 (2006). crossref(new window)

20.
A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, "Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals," J. Chem. Phys., 125 [22] 224106 (2006). crossref(new window)

21.
Y. Nigara, "Measurement of the Optical Constants of Yttrium Oxide," Jpn. J. Appl. Phys., 7 404 (1968). crossref(new window)

22.
M. Christensen, W. Wolf, C. Freeman, E. Wimmer, R. B. Adamson, L. Hallstadius, P. E. Cantonwine, and E. V. Mader, "H in a-Zr and in Zirconium Hydrides: Solubility, Effect on Dimensional Changes, and the Role of Defects," J. Phys.: Condens. Matter, 27 [2] 025402 (2014).

23.
P. Soukiassian, E. Wimmer, E. Celasco, C. Giallombardo, S. Bonanni, L. Vattuone, L. Savio, A. Tejeda, M. Silly, M. D'angelo, F. Sirotti, and M Rocca, "Hydrogen-Induced Nanotunnel Opening within Semiconductor Subsurface," Nat. Commun., 4 2800 (2013).

24.
N. Sugiyama, A. Okamoto, T. Tani, and N. Kamiya, "Method of producing silicon carbide single crystal"; US Patent 5,964,944 A (October 12, 1999).

25.
V. Derycke, P. Soukiassian, A. Mayne, G. Dujardin, and J. Gautier, "Carbon Atomic Chain Formation on the b-SiC(100) Surface by Controlled $sp{\rightarrow}sp^3$ Transformation," Phys. Rev. Lett., 81 [26] 5868 (1998). crossref(new window)

26.
V. Derycke, P. G. Soukiassian, F. Amy, Y. J. Chabal, M. D. D'angelo, H. B. Enriquez, and M. G. Silly, "Nanochemistry at the Atomic Scale Revealed in Hydrogen-Induced Semiconductor Surface Metallization," Nat. Mater., 2 [4] 253-58 (2003). crossref(new window)

27.
P. G. Soukiassian and H. B. Enriquez, "Atomic Scale Control and Understanding of Cubic Silicon Carbide Surface Reconstructions, Nanostructures and Nanochemistry," J. Phys. Cond. Mat., 16 [17] S1611 (2004). crossref(new window)

28.
A. Tejeda, E. Wimmer, P. Soukiassian, D. Dunham, E. Rotenberg, J. D. Denlinger, and E. G. Michel, "Atomic Structure Determination of the 3C-SiC(001) c(4x2) Surface Reconstruction: Experiment and Theory," Phys. Rev. B, 75 [19] 195315 (2007). crossref(new window)

29.
M. Weinert, E. Wimmer, and A. J. Freeman, "Total-Energy All-Electron Density Functional Method for Bulk Solids and Surfaces," Phys. Rev. B, 26 [8] 4571 (1982). crossref(new window)

30.
E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, "Full-Potential Self-Consistent Linearized-Augmented-Plane-Wave Method for Calculating the Electronic Structure of Molecules and Surfaces: $O_2$ Molecule," Phys. Rev. B, 24 [2] 864 (1981).

31.
P. E. Blochl, "Projector Augmented-Wave Method," Phys. Rev. B, 50 [24] 17953 (1994). crossref(new window)

32.
K. Lejaeghere, G. Bihlmayer, T. Bjorkman, P. Blaha, S. Blugel, V. Blum, D. Caliste, I. E. Castelli, S. J. Clark, A. D. Corso, S. Gironcoli, T. Deutsch, J. K. Dewhurst, I. D. Marco, C. Draxl, M. Dulak, O. Eriksson, J. A. Flores-Livas, K. F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Granas, E. K. U. Gross, A. Gulans, F. Gygi, D. R. Hamann, P. J. Hasnip, N. A. W. Holzwarth, D. Iusan, D. B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Kucukbenli, Y. O. Kvashnin, I. L. M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordstrom, T. Ozaki, L. Paulatto, C. J. Pickard, W. Poelmans, M. I. J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunstrom, A. Tkatchenko, M. Torrent, D. Vanderbilt, M. J. van Setten, V. van Speybroeck, J. M. Wills, J. R. Yates, G.-X. Zhang, and S. Cottenier, "Reproducibility in Density Functional Theory Calculations of Solis," Science, 351 [6280] aad3000 (2016).