Computational Simulations of Thermoelectric Transport Properties

- Journal title : Journal of the Korean Ceramic Society
- Volume 53, Issue 3, 2016, pp.273-281
- Publisher : The Korean Ceramic Society
- DOI : 10.4191/kcers.2016.53.3.273

Title & Authors

Computational Simulations of Thermoelectric Transport Properties

Ryu, Byungki; Oh, Min-Wook;

Ryu, Byungki; Oh, Min-Wook;

Abstract

This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-principles calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents results on and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the computational simulations on the transport properties will provide much help to experimental scientist researching novel thermoelectric materials.

Keywords

Thermoelectric properties;Computational simulations;Seebeck coefficient;Electrical conductivity;Thermal conductivity;

Language

English

Cited by

1.

2.

References

1.

K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, "Cubic $AgPb_mSbTe_{2+m}$ : Bulk Thermoelectric Materials with High Figure of Merit," Science, 303 [5659] 818-21 (2004).

2.

G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nature Mater., 7 [2] 105-14 (2008).

3.

J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science, 321 [5888] 554-57 (2008).

4.

Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, "Convergence of Electronic Bands for High Performance Bulk Thermoelectrics," Nature, 473 [7345] 66-9 (2011).

5.

P. F. P. Poudeu, J. D. Angelo, A. D. Downey, J. L. Short, T. P. Hogan, M. G. Kanatzidis, "High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type $Na_{1-x}Pb_mSb_{y-}Te_{m+2}$ ," Angew. Chem. Int. Ed., 45 [23] 3835-39 (2006).

6.

G. K. H. Madsen and D. J. Singh, "BoltzTraP. A Code for Calculating Band-Structure Dependent Quantities," Comput. Phys. Commun., 175 [1] 67-71 (2006).

7.

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2001.

8.

G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996).

9.

G. Kresse and J. Furthmuller, "Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996).

10.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos1, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari1, and R. M. Wentzcovitch, "QUANTUM ESPRESSO: a Modular and Open-Source Software Project for Quantum Simulations of Materials," J. Phys.: Condens. Matter, 21 [39] 395502 (2009).

11.

G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, "BoltzWann: A code for the Evaluation of Thermoelectric and Electronic Transport Properties with a Maximally-Localized Wannier Functions Basis", Comp. Phys. Comm., 185 [1] 422-29 (2014).

12.

G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg, 2001.

13.

M. W. Oh, D. M. Wee, S. D. Park, B. S. Kim, and H. W. Lee, "Electronic Structure and Thermoelectric Transport Properties of AgTlTe: First-Principles Calculations," Phys. Rev. B, 77 [16] 165119 (2008).

14.

G. Jeffrey and T. S. Ursell, "Thermoelectric Efficiency and Compatibility," Phys. Rev. Lett., 91 [14] 148301 (2003).

15.

S. J. Youn and A. J. Freeman, "First-Principles Electronic Structure and its Relation to Thermoelectric Properties of $Bi_2Te_3$ ," Phys. Rev. B, 63 [8] 851121 (2001).

16.

P. Larson, S. D. Mahanti, and M. G. Kanatzdis, "Electronic Structure and Transport of $Bi_2Te_3$ and $BaBiTe_3$ ," Phys. Rev. B, 61 [12] 8162 (2000).

17.

T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, "Transport Coefficients from First-Principles Calculations," Phys. Rev. B, 68 [12] 125210 (2003).

18.

B.-L. Huang and M. Kaviany, "Ab Initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride," Phys. Rev. B, 77 [12] 125209 (2008).

19.

S. Lee and P. von Allmen, "Tight-Binding Modeling of Thermoelectric Properties of Bismuth Telluride," Appl. Phys. Lett., 88 [2] 022107 (2006).

20.

S. K. Mishra, S. Satpathy, and O. Jepsen, "Electronic Structure and Thermoelectric Properties of Bismuth Telluride and Bismuth Selenide," J. Phys. Cond. Matter., 9 [2] 461 (1997).

21.

P. Larson, and W. R. L. Lambrecht, "Electronic Structure and Magnetism in $Bi_2Te_3$ , $Bi_2Se_3$ , and $Sb_2Te_3$ Doped with Transition Metals (Ti-Zn)," Phys. Rev. B, 78 [19] 195207 (2008).

22.

P. Larson, "Effect of $p_{1/2}$ Corrections in the Electronic Structure of $Bi_2Te_3$ Compounds," Phys. Rev. B, 68 [15] 1551211 (2003).

23.

B. Yu. Yavorsky, N. F. Hinsche, I. Mertig, and P. Zahn, "Electronic Structure and Transport Anisotropy of $Bi_2Te_3$ and $Sb_2Te_3$ ," Phys. Rev. B, 84 [16] 165208 (2011).

24.

N. F. Hinsche, B. Yu. Yavorsky, I. Mertig, and P. Zahn, "Influence of Strain on Anisotropic Thermoelectric Transport in $Bi_2Te_3$ and $Sb_2Te_3$ ," Phys. Rev. B, 84 [16] 165214 (2011).

25.

M. Kim, A. J. Freeman, and C. B. Geller, "Screened Exchange LDA Determination of the Ground and Excited State Properties of Thermoelectrics: $Bi_2Te_3$ ," Phys. Rev. B, 72 [3] 035205 (2005).

26.

P. Pecheur and G. Toussaint, "Electronic Structure and Bonding in Bismuth Telluride," Phys. Lett. A, 135 [3] 223-26 (1989).

27.

P. Pecheur and G. Toussaint, "Tight-binding Studies of Crystal Stability and Defects in $Bi_2Te_3$ ," J. Phys. Chem. Solids., 55 [4] 327-38 (1994).

28.

B. Ryu, B. S. Kim, J. E. Lee, S. J. Joo, B. K. Min, H. W. Lee, S. D. Park, and M. W. Oh, "Prediction of the Band Structures of $Bi_2Te_3$ -Related Binary and Sb/Se-Doped Ternary Thermoelectric Materials," J. Kor. Phys. Soc., 68 [1] 115-20 (2016).

29.

M. W. Oh, B. Ryu, J. E. Lee, S. J. Joo, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Electronic Structure and Seebeck Coefficients of $Bi_2Te_3$ , $Sb_2Te_3$ , and $(Bi_{0.25}Te_{0.75})_2Te_3$ : A First-Principles Calculation Study," J. Nanoelec. Optoelec., 10 [3] 391-96 (2015).

30.

S. Nakajima, "The Crystal Structure of $Bi_2Te_{3-x}Se_x$ ," J. Phys. Chem. Solids., 24 [3] 479 (1963).

31.

M. W. Oh, J. H. Son, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Antisite Defects in n-type $Bi_2(Te,\;Se)_3$ : Experimental and Theoretical Studies," J. Appl. Phys., 115 [13] 133706 (2014).

32.

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865 (1996).

33.

G. A. Thomas, D. H. Rapkine, R. B. Van Dover, L. F. Mattheiss, W. A. Sunder, L. F. Schneemeyer, and J. V. Waszczak, "Large Electronic-Density Increase on Cooling a Layered Metal: Doped $Bi_2Te_3$ ," Phys. Rev. B., 46 [3] 1553 (1992).

34.

T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and G. D. Mahan, "Thermoelectric Properties of $Sb_2Te_3$ Under Pressure and Uniaxial Stress," Phys. Rev. B, 68 [8] 085201 (2003).

35.

H. Scherrer and S. Scherrer, "Bismuth Telluride, Antimony Telluride, and Their Solid Solutions, pp. 211-238 in CRC Handbook of Thermoelectrics. Ed. by D. M. Rowe, CRC Press, Boca Raton, 1995.

36.

H. J. Goldsmid, "The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride," Proc. Phys. Soc., 71 [4] 633 (1958).

37.

Y. Kang, S. H. Jeon, Y. W. Son, Y. S. Lee, M. Ryu, S. Lee, and S. Han, "Microscopic Origin of Universal Quasilinear Band Structures of Transparent Conducting Oxides," Phys. Rev. Lett., 108 196404 (2012).

38.

J. M. Ziman, Electrons and Phonons; pp. 288-333, Oxford University Press, Oxford, 1979.

39.

A. Bid, A. Bora, and A. K. Raychaudhuri, "Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ${\geq}15nm$ : Applicability of Bloch-Gruneisen Theorem," Phys. Rev. B, 74 [3] 035426 (2006).

40.

J. Y. Kim, M. W. Oh, S. Lee, Y. C. Cho, J. H. Yoon, G. W. Lee, C. R. Cho, C. H. Park, and S. Y. Jeong, "Abnormal Drop in Electrical Resistivity with Impurity Doping of Single-Crystal Ag," Sci. Rep., 4 5450 (2014).

41.

P. B. Allen, W. E. Pickett, and H. Krakauer, "Band-Theory Analysis of Anisotropic Transport in $La_2CuO_4$ -Based Superconductors," Phys. Rev. B, 36 [7] 3926-29 (1987).

42.

R. J. Mehta, Y. Zhang, H. Zhu, D. S. Parker, M. Belley, D. J. Singh, R. Ramprasad, T. Borca-Tasciuc, and G. Ramanath, "Seebeck and Figure of Merit Enhancement in Nanostructured Antimony Telluride by Antisite Defect Suppression through Sulfur Doping," Nano Lett., 12 [9] 4523-29 (2012).

43.

P. B. Allen, "Empirical Electron-Phonon $\lambda$ Values from Resistivity of Cubic Metallic Elements," Phys. Rev. B, 36 [5] 2920-23 (1987).

44.

P. B. Allen, T. P. Beaulac, F. S. Khan, W. H. Butler, F. J. Pinski, and J. C. Swihart, "DC Transport in Metals," Phys. Rev. B, 34 [6] 4331-33 (1986).

45.

S. Y. Savrasov and D. Y. Savrasov, "Electron-Phonon Interactions and Related Physical Properties of Metals from Linear-Response Theory," Phys. Rev. B, 54 [23] 16487-501 (1996).

46.

G. P. Srivastava, Physics of Phonons; pp. 122-174, CRC Press, Boca Raton, 1990.

47.

P. Giannozzi, S. De Gironcoli, P. Pavone, and S. Baroni, "Ab initio Calculation of Phonon Dispersions in Semiconductors," Phys. Rev. B, 43 [9] 7231 (1991).

48.

G. Deinzer, G. Birner, and D. Strauch, "Ab initio Calculation of the Linewidth of Various Phonon Modes in Germanium and Silicon," Phys. Rev. B, 67 [14] 144304 (2003).

49.

D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D.A. Stewart, "Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles," Appl. Phys. Lett., 91 [23] 231922 (2007).

50.

K. Esfarjani, H. T. Stokes, "Method to Extract Anharmonic Force Constants from First Principles Calculations," Phys. Rev. B, 77 [14] 144112 (2008).

51.

X. Tang and J. Dong, "Pressure Dependence of Harmonic and Anharmonic Lattice Dynamics in MgO: a First-Principles Calculation and Implications for Lattice Thermal Conductivity," Phys. Earth Planet. Inter., 174 [1] 33 (2009).

52.

X. Tang and J. Dong, "Lattice Thermal Conductivity of MgO at Conditions of Earth's Interior," Proc. Natl. Acad. Sci. USA, 107 [10] 4539-43 (2010).

53.

L. Chaput, A. Togo, I. Tanaka, and G. Hug, "Phonon-Phonon Interactions in Transition Metals," Phys. Rev. B, 84 [9] 094302 (2011).

54.

A. Togo, L. Chaput, and I. Tanaka, "Distributions of Phonon Lifetimes in Brillouin Zones," Phys. Rev. B, 91 [9] 094306 (2015).

55.

A. Katre, A. Togo, I. Tanaka, and G. K. H. Madsen, "First-Principles Study of Thermal Conductivity Cross-over in Nanostructured Zinc-Chalcogenides," J. Appl. Phys., 117 [4] 045102 (2015).

56.

A. Togo and I. Tanaka, "First Principles Phonon Calculations in Materials Science," Scr. Mater., 108 1-5 (2015).

57.

Webpage of phono3py, http://atztogo.github.io/phono3py. Accessed on 11/04/2016.

58.

W. Li, J. Carrete, N. A. Katcho, and N. Mingo, "ShengBTE: A Solver for the Boltzmann Transport Equation for Phonons," Comput. Phys. Commun., 185 [6] 1747 (2014).

59.

O. Hellman and D. A. Borido, "Phonon Thermal Transport in $Bi_2Te_3$ from First Principles," Phys. Rev. B, 90 [13] 134309 (2014).

60.

K. Esfarjani, G. Chen, and H. T. Stokes, "Heat Transport in Silicon from First-Principles Calculations," Phys. Rev. B, 84 [8] 085204 (2011).

61.

Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, "On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures," Appl. Phys. Lett., 99 [5] 053122 (2011).

62.

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, "First-Principles Simulation of Electron Mean-Free-Path Spectra and Thermoelectric Properties in Silicon," EPL(Europhysics Letters), 109 [5] 57006 (2015).

63.

Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, "Phonon Conduction in PbSe, PbTe, $PbSe_{1-x}Te_x$ from First-Principles Calculations," Phys. Rev. B, 85 [18] 184303 (2012).

64.

J. M. Seklton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, "Thermal Physics of the Lead Chalcogenides PbS, PbSe, and PbTe from First Principles," Phys. Rev. B, 89 [20] 205203 (2014).