Advanced SearchSearch Tips
Computational Simulations of Thermoelectric Transport Properties
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Computational Simulations of Thermoelectric Transport Properties
Ryu, Byungki; Oh, Min-Wook;
  PDF(new window)
This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-principles calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents results on and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the computational simulations on the transport properties will provide much help to experimental scientist researching novel thermoelectric materials.
Thermoelectric properties;Computational simulations;Seebeck coefficient;Electrical conductivity;Thermal conductivity;
 Cited by
K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, "Cubic $AgPb_mSbTe_{2+m}$: Bulk Thermoelectric Materials with High Figure of Merit," Science, 303 [5659] 818-21 (2004). crossref(new window)

G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nature Mater., 7 [2] 105-14 (2008). crossref(new window)

J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science, 321 [5888] 554-57 (2008). crossref(new window)

Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, "Convergence of Electronic Bands for High Performance Bulk Thermoelectrics," Nature, 473 [7345] 66-9 (2011). crossref(new window)

P. F. P. Poudeu, J. D. Angelo, A. D. Downey, J. L. Short, T. P. Hogan, M. G. Kanatzidis, "High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type $Na_{1-x}Pb_mSb_{y-}Te_{m+2}$," Angew. Chem. Int. Ed., 45 [23] 3835-39 (2006). crossref(new window)

G. K. H. Madsen and D. J. Singh, "BoltzTraP. A Code for Calculating Band-Structure Dependent Quantities," Comput. Phys. Commun., 175 [1] 67-71 (2006). crossref(new window)

P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2001.

G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996). crossref(new window)

G. Kresse and J. Furthmuller, "Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). crossref(new window)

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos1, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari1, and R. M. Wentzcovitch, "QUANTUM ESPRESSO: a Modular and Open-Source Software Project for Quantum Simulations of Materials," J. Phys.: Condens. Matter, 21 [39] 395502 (2009).

G. Pizzi, D. Volja, B. Kozinsky, M. Fornari, and N. Marzari, "BoltzWann: A code for the Evaluation of Thermoelectric and Electronic Transport Properties with a Maximally-Localized Wannier Functions Basis", Comp. Phys. Comm., 185 [1] 422-29 (2014). crossref(new window)

G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg, 2001.

M. W. Oh, D. M. Wee, S. D. Park, B. S. Kim, and H. W. Lee, "Electronic Structure and Thermoelectric Transport Properties of AgTlTe: First-Principles Calculations," Phys. Rev. B, 77 [16] 165119 (2008). crossref(new window)

G. Jeffrey and T. S. Ursell, "Thermoelectric Efficiency and Compatibility," Phys. Rev. Lett., 91 [14] 148301 (2003). crossref(new window)

S. J. Youn and A. J. Freeman, "First-Principles Electronic Structure and its Relation to Thermoelectric Properties of $Bi_2Te_3$," Phys. Rev. B, 63 [8] 851121 (2001).

P. Larson, S. D. Mahanti, and M. G. Kanatzdis, "Electronic Structure and Transport of $Bi_2Te_3$ and $BaBiTe_3$," Phys. Rev. B, 61 [12] 8162 (2000). crossref(new window)

T. J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, "Transport Coefficients from First-Principles Calculations," Phys. Rev. B, 68 [12] 125210 (2003). crossref(new window)

B.-L. Huang and M. Kaviany, "Ab Initio and Molecular Dynamics Predictions for Electron and Phonon Transport in Bismuth Telluride," Phys. Rev. B, 77 [12] 125209 (2008). crossref(new window)

S. Lee and P. von Allmen, "Tight-Binding Modeling of Thermoelectric Properties of Bismuth Telluride," Appl. Phys. Lett., 88 [2] 022107 (2006). crossref(new window)

S. K. Mishra, S. Satpathy, and O. Jepsen, "Electronic Structure and Thermoelectric Properties of Bismuth Telluride and Bismuth Selenide," J. Phys. Cond. Matter., 9 [2] 461 (1997). crossref(new window)

P. Larson, and W. R. L. Lambrecht, "Electronic Structure and Magnetism in $Bi_2Te_3$, $Bi_2Se_3$, and $Sb_2Te_3$ Doped with Transition Metals (Ti-Zn)," Phys. Rev. B, 78 [19] 195207 (2008). crossref(new window)

P. Larson, "Effect of $p_{1/2}$ Corrections in the Electronic Structure of $Bi_2Te_3$ Compounds," Phys. Rev. B, 68 [15] 1551211 (2003).

B. Yu. Yavorsky, N. F. Hinsche, I. Mertig, and P. Zahn, "Electronic Structure and Transport Anisotropy of $Bi_2Te_3$ and $Sb_2Te_3$," Phys. Rev. B, 84 [16] 165208 (2011). crossref(new window)

N. F. Hinsche, B. Yu. Yavorsky, I. Mertig, and P. Zahn, "Influence of Strain on Anisotropic Thermoelectric Transport in $Bi_2Te_3$ and $Sb_2Te_3$," Phys. Rev. B, 84 [16] 165214 (2011). crossref(new window)

M. Kim, A. J. Freeman, and C. B. Geller, "Screened Exchange LDA Determination of the Ground and Excited State Properties of Thermoelectrics: $Bi_2Te_3$," Phys. Rev. B, 72 [3] 035205 (2005). crossref(new window)

P. Pecheur and G. Toussaint, "Electronic Structure and Bonding in Bismuth Telluride," Phys. Lett. A, 135 [3] 223-26 (1989). crossref(new window)

P. Pecheur and G. Toussaint, "Tight-binding Studies of Crystal Stability and Defects in $Bi_2Te_3$," J. Phys. Chem. Solids., 55 [4] 327-38 (1994). crossref(new window)

B. Ryu, B. S. Kim, J. E. Lee, S. J. Joo, B. K. Min, H. W. Lee, S. D. Park, and M. W. Oh, "Prediction of the Band Structures of $Bi_2Te_3$-Related Binary and Sb/Se-Doped Ternary Thermoelectric Materials," J. Kor. Phys. Soc., 68 [1] 115-20 (2016). crossref(new window)

M. W. Oh, B. Ryu, J. E. Lee, S. J. Joo, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Electronic Structure and Seebeck Coefficients of $Bi_2Te_3$, $Sb_2Te_3$, and $(Bi_{0.25}Te_{0.75})_2Te_3$: A First-Principles Calculation Study," J. Nanoelec. Optoelec., 10 [3] 391-96 (2015). crossref(new window)

S. Nakajima, "The Crystal Structure of $Bi_2Te_{3-x}Se_x$," J. Phys. Chem. Solids., 24 [3] 479 (1963). crossref(new window)

M. W. Oh, J. H. Son, B. S. Kim, S. D. Park, B. K. Min, and H. W. Lee, "Antisite Defects in n-type $Bi_2(Te,\;Se)_3$: Experimental and Theoretical Studies," J. Appl. Phys., 115 [13] 133706 (2014). crossref(new window)

J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865 (1996). crossref(new window)

G. A. Thomas, D. H. Rapkine, R. B. Van Dover, L. F. Mattheiss, W. A. Sunder, L. F. Schneemeyer, and J. V. Waszczak, "Large Electronic-Density Increase on Cooling a Layered Metal: Doped $Bi_2Te_3$," Phys. Rev. B., 46 [3] 1553 (1992). crossref(new window)

T. Thonhauser, T. J. Scheidemantel, J. O. Sofo, J. V. Badding, and G. D. Mahan, "Thermoelectric Properties of $Sb_2Te_3$ Under Pressure and Uniaxial Stress," Phys. Rev. B, 68 [8] 085201 (2003). crossref(new window)

H. Scherrer and S. Scherrer, "Bismuth Telluride, Antimony Telluride, and Their Solid Solutions, pp. 211-238 in CRC Handbook of Thermoelectrics. Ed. by D. M. Rowe, CRC Press, Boca Raton, 1995.

H. J. Goldsmid, "The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride," Proc. Phys. Soc., 71 [4] 633 (1958). crossref(new window)

Y. Kang, S. H. Jeon, Y. W. Son, Y. S. Lee, M. Ryu, S. Lee, and S. Han, "Microscopic Origin of Universal Quasilinear Band Structures of Transparent Conducting Oxides," Phys. Rev. Lett., 108 196404 (2012). crossref(new window)

J. M. Ziman, Electrons and Phonons; pp. 288-333, Oxford University Press, Oxford, 1979.

A. Bid, A. Bora, and A. K. Raychaudhuri, "Temperature Dependence of the Resistance of Metallic Nanowires of Diameter ${\geq}15nm$: Applicability of Bloch-Gruneisen Theorem," Phys. Rev. B, 74 [3] 035426 (2006). crossref(new window)

J. Y. Kim, M. W. Oh, S. Lee, Y. C. Cho, J. H. Yoon, G. W. Lee, C. R. Cho, C. H. Park, and S. Y. Jeong, "Abnormal Drop in Electrical Resistivity with Impurity Doping of Single-Crystal Ag," Sci. Rep., 4 5450 (2014).

P. B. Allen, W. E. Pickett, and H. Krakauer, "Band-Theory Analysis of Anisotropic Transport in $La_2CuO_4$-Based Superconductors," Phys. Rev. B, 36 [7] 3926-29 (1987).

R. J. Mehta, Y. Zhang, H. Zhu, D. S. Parker, M. Belley, D. J. Singh, R. Ramprasad, T. Borca-Tasciuc, and G. Ramanath, "Seebeck and Figure of Merit Enhancement in Nanostructured Antimony Telluride by Antisite Defect Suppression through Sulfur Doping," Nano Lett., 12 [9] 4523-29 (2012). crossref(new window)

P. B. Allen, "Empirical Electron-Phonon $\lambda$ Values from Resistivity of Cubic Metallic Elements," Phys. Rev. B, 36 [5] 2920-23 (1987). crossref(new window)

P. B. Allen, T. P. Beaulac, F. S. Khan, W. H. Butler, F. J. Pinski, and J. C. Swihart, "DC Transport in Metals," Phys. Rev. B, 34 [6] 4331-33 (1986). crossref(new window)

S. Y. Savrasov and D. Y. Savrasov, "Electron-Phonon Interactions and Related Physical Properties of Metals from Linear-Response Theory," Phys. Rev. B, 54 [23] 16487-501 (1996). crossref(new window)

G. P. Srivastava, Physics of Phonons; pp. 122-174, CRC Press, Boca Raton, 1990.

P. Giannozzi, S. De Gironcoli, P. Pavone, and S. Baroni, "Ab initio Calculation of Phonon Dispersions in Semiconductors," Phys. Rev. B, 43 [9] 7231 (1991). crossref(new window)

G. Deinzer, G. Birner, and D. Strauch, "Ab initio Calculation of the Linewidth of Various Phonon Modes in Germanium and Silicon," Phys. Rev. B, 67 [14] 144304 (2003). crossref(new window)

D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D.A. Stewart, "Intrinsic Lattice Thermal Conductivity of Semiconductors from First Principles," Appl. Phys. Lett., 91 [23] 231922 (2007). crossref(new window)

K. Esfarjani, H. T. Stokes, "Method to Extract Anharmonic Force Constants from First Principles Calculations," Phys. Rev. B, 77 [14] 144112 (2008). crossref(new window)

X. Tang and J. Dong, "Pressure Dependence of Harmonic and Anharmonic Lattice Dynamics in MgO: a First-Principles Calculation and Implications for Lattice Thermal Conductivity," Phys. Earth Planet. Inter., 174 [1] 33 (2009). crossref(new window)

X. Tang and J. Dong, "Lattice Thermal Conductivity of MgO at Conditions of Earth's Interior," Proc. Natl. Acad. Sci. USA, 107 [10] 4539-43 (2010). crossref(new window)

L. Chaput, A. Togo, I. Tanaka, and G. Hug, "Phonon-Phonon Interactions in Transition Metals," Phys. Rev. B, 84 [9] 094302 (2011). crossref(new window)

A. Togo, L. Chaput, and I. Tanaka, "Distributions of Phonon Lifetimes in Brillouin Zones," Phys. Rev. B, 91 [9] 094306 (2015). crossref(new window)

A. Katre, A. Togo, I. Tanaka, and G. K. H. Madsen, "First-Principles Study of Thermal Conductivity Cross-over in Nanostructured Zinc-Chalcogenides," J. Appl. Phys., 117 [4] 045102 (2015). crossref(new window)

A. Togo and I. Tanaka, "First Principles Phonon Calculations in Materials Science," Scr. Mater., 108 1-5 (2015). crossref(new window)

Webpage of phono3py, Accessed on 11/04/2016.

W. Li, J. Carrete, N. A. Katcho, and N. Mingo, "ShengBTE: A Solver for the Boltzmann Transport Equation for Phonons," Comput. Phys. Commun., 185 [6] 1747 (2014). crossref(new window)

O. Hellman and D. A. Borido, "Phonon Thermal Transport in $Bi_2Te_3$ from First Principles," Phys. Rev. B, 90 [13] 134309 (2014). crossref(new window)

K. Esfarjani, G. Chen, and H. T. Stokes, "Heat Transport in Silicon from First-Principles Calculations," Phys. Rev. B, 84 [8] 085204 (2011). crossref(new window)

Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, "On the Importance of Optical Phonons to Thermal Conductivity in Nanostructures," Appl. Phys. Lett., 99 [5] 053122 (2011). crossref(new window)

B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J. M. Mendoza, O. D. Restrepo, X. Ruan, and G. Chen, "First-Principles Simulation of Electron Mean-Free-Path Spectra and Thermoelectric Properties in Silicon," EPL(Europhysics Letters), 109 [5] 57006 (2015). crossref(new window)

Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, and G. Chen, "Phonon Conduction in PbSe, PbTe, $PbSe_{1-x}Te_x$ from First-Principles Calculations," Phys. Rev. B, 85 [18] 184303 (2012). crossref(new window)

J. M. Seklton, S. C. Parker, A. Togo, I. Tanaka, and A. Walsh, "Thermal Physics of the Lead Chalcogenides PbS, PbSe, and PbTe from First Principles," Phys. Rev. B, 89 [20] 205203 (2014). crossref(new window)

G. K. H. Madsen, "Automated Search for New Thermoelectric Materials: The case of LiZnSb," J. Amer. Chem. Soc., 128 [37] 12140-46 (2006). crossref(new window)

P. Gorai, P. Parilla, E. S. Toberer, and Vladan Stevanovic, "Computational Exploration of the Binary $A_1B_1$ Chemical Space for Thermoelectric Performance," Chem. Mater., 27 [18] 6213-21 (2015). crossref(new window)