Advanced SearchSearch Tips
Proton Conduction in Nonstoichiometric Σ3 BaZrO3 (210)[001] Tilt Grain Boundary Using Density Functional Theory
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Proton Conduction in Nonstoichiometric Σ3 BaZrO3 (210)[001] Tilt Grain Boundary Using Density Functional Theory
Kim, Ji-Su; Kim, Yeong-Cheol;
  PDF(new window)
We investigate proton conduction in a nonstoichiometric (210)[001] tilt grain boundary using density functional theory (DFT). We employ the space charge layer (SCL) and structural disorder (SD) models with the introduction of protons and oxygen vacancies into the system. The segregation energies of proton and oxygen vacancy are determined as -0.70 and -0.54 eV, respectively. Based on this data, we obtain a Schottky barrier height of 0.52 V and defect concentrations at 600K, in agreement with the reported experimental values. We calculate the energy barrier for proton migration across the grain boundary core as 0.61 eV, from which we derive proton mobility. We also obtain the proton conductivity from the knowledge of proton concentration and mobility. We find that the calculated conductivity of the nonstoichiometric grain boundary is similar to those of the stoichiometric ones in the literature.
Proton conduction;Nonstoichiometric grain boundary;Density functional theory;Space charge layer;
 Cited by
, Chemistry of Materials, 2017, 29, 18, 7931  crossref(new windwow)
from first-principles free energy calculations, J. Mater. Chem. A, 2017, 5, 26, 13421  crossref(new windwow)
T. Takahashi and H. Iwahara, "Proton Conduction in Perovskite Type Oxide Solid Solution," Rev. Chim. Miner., 17 243-53 (1980).

H. Iwahara, T. Esaka, H. Uchida, and N. Maeda, "Proton Conduction in Sintered Oxide and its Application to Steam Electrolysis for Hydrogen Production," Solid State Ionics, 3-4 359-63 (1981). crossref(new window)

K. D. Kreuer, "Proton-Conducting Oxides," Annu. Rev. Mater. Res., 33 333-59 (2003). crossref(new window)

T. Norby and Y. Larring, "Concentration and Transport of Protons in Oxides," Curr. Opin. Solid State Mater. Sci., 2 [5] 593-99 (1997). crossref(new window)

F. Iguchi, N. Sata, T. Tsurui, and H. Yugami, "Microstructures and Grain Boundary Conductivity of $BaZr_{1-x}Y_xO_3$ (x = 0.05, 0.10, 0.15) Ceramics," Solid State Ionics, 178 [7] 691-95 (2007). crossref(new window)

P. Babilo, T. Uda, and S. M. Haile, "Processing of Yttrium-doped Barium Zirconate for High Proton Conductivity," J. Mater. Res., 22 [5] 1322-30 (2007). crossref(new window)

S. B. C. Duval, P. Holtappels, U. F. Vogt, E. Pomjakushina, K. Conder, U. Stimming, and T. Graule, "Electrical Conductivity of the Proton Conductor $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$ Obtained by High Temperature Annealing," Solid State Ionics, 178 [25] 1437-41 (2007). crossref(new window)

C. Kjolseth, H. Fjeld, O. Prytz, P. I. Dahl, C. Estournes, R. Haugsrud, and T. Norby, "Space-Charge Theory Applied to the Grain Boundary Impedance of Proton Conducting $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$," Solid State Ionics, 181 [5] 268-75 (2010). crossref(new window)

E. E. Helgee, A. Lindman, and G. Wahnstrom, "Origin of Space Charge in Grain Boundaries of Proton-Conducting $BaZrO_3$," Fuel Cells, 13 [1] 19-28 (2013). crossref(new window)

J. M. Polfus, K. Toyoura, F. Oba, I. Tanaka, and R. Haugsrud, "Defect Chemistry of a $BaZrO_3$ ${\Sigma}3$ (111) Grain Boundary by First Principles Calculations and Space-Charge Theory," Phys. Chem. Chem. Phys., 14 [35] 12339-46 (2012). crossref(new window)

A. Lindman, E. E. Helgee, J. Nyman, and G.Wahnstrom, "Oxygen Vacancy Segregation in Grain Boundaries of $BaZrO_3$ Using Interatomic Potentials," Solid State Ionics, 230 27-31 (2013). crossref(new window)

B. J. Nyman, E. E. Helgee, and G. Wahnstrom, "Oxygen Vacancy Segregation and Space-Charge Effects in Grain Boundaries of Dry and Hydrated $BaZrO_3$," Appl. Phys. Lett., 100 [6] 061903 (2012). crossref(new window)

J.-H. Yang, D.-H. Kim, B.-K. Kim, and Y.-C. Kim, "Calculation of Proton Conductivity at the ${\Sigma}3(111)/[1{\overline{1}}0]$ Tilt Grain Boundary of Barium Zirconate Using Density Functional Theory," Solid State Ionics, 279 60-5 (2015). crossref(new window)

M.-Y. Kim, G. Duscher, N. D. Browning, K. Sohlberg, S. T. Pantelides, and S. J. Pennycook, "Nonstoichiometry and the Electrical Activity of Grain Boundaries in $SrTiO_3$," Phys. Rev. Lett., 86 [18] 184056-59 (2001).

S.-Y. Choi, S. Joong, L. Kang, S.-Y. Chung, T. Yamamoto, and Y. Ikuhara, "Change in Cation Nonstoichiometry at Interfaces during Crystal Growth in Polycrystalline $BaTiO_3$," App. Phys. Lett., 88 [1] 011909-3 (2006). crossref(new window)

J.-S. Kim, J.-H. Yang, B.-K. Kim, and Y.-C. Kim, "Study of ${\Sigma}3$ $BaZrO_3$ (210)[001] Tilt Grain Boundaries Using Density Functional Theory and a Space Charge Layer Model," J. Ceram. Soc. Jpn., 123 [4] 245-49 (2015). crossref(new window)

G. Kresse and J. Hafner, "Ab initio Molecular Dynamics for Liquid Metals," Phys. Rev. B, 47 558-61 (1993). crossref(new window)

G. Kresse, Ab initio Molekular Dynamik fur flussige Metalle, in Ph.D. Thesis, Technische Universität Wien, Wien, 1993.

G. Kresse and J. Furthmuller, "Efficiency of ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). crossref(new window)

G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996). crossref(new window)

G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method," Phys. Rev. B, 59 [3] 1758-75 (1999).

P. E. Blochl, "Projector Augmented-Wave Method," Phys. Rev. B, 50 [24] 17953-79 (1994). crossref(new window)

J.P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996). crossref(new window)

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U study," Phys. Rev. B, 57 [3] 1505-9 (1998). crossref(new window)

V. Stevanovic, S. Lany, X. Zhang, and A. Zunger, "Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation: Fitted Elemental-Phase Reference Energies," Phys. Rev. B, 85 [11] 115104-12 (2012). crossref(new window)

H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-Zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976). crossref(new window)

W. Tang, E. Sanville, and G. Henkelman, "A Grid-based Bader Analysis Algorithm without Lattice Bias," J. Phys.: Condens. Matter, 21 [8] 084204 (2009). crossref(new window)

G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901-4 (2000). crossref(new window)

K. Momma and F. Izumi, "VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis," J. Appl. Cryst., 41 [3] 653-58 (2008). crossref(new window)

S. Yamanaka, M. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda, S. Kobayashi, and K. Kurosaki, "Heat Capacities and Thermal Conductivities of Perovskite Type $BaZrO_3$ and $BaCeO_3$," J. Alloys Compd., 359 [1] 1-4 (2003). crossref(new window)

R. A. De Souza, "The Formation of Equilibrium Space-Charge Zones at Grain Boundaries in the Perovskite Oxide $SrTiO_3$," Phys. Chem. Chem. Phys., 11 [43] 9939-69 (2009). crossref(new window)

H. G. Bohn and T. Schober, "Electrical Conductivity of the High-Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$," J. Am. Ceram. Soc., 83 [4] 768-72 (2000).

M. A. Gomez, M. Chunduru, L. Chigweshe, L. Foster, S. J. Fensin, K. M. Fletcher and L. E. Fernandez, "The Effect of Yttrium Dopant on the Proton Conduction Pathways of $BaZrO_3$, a Cubic Perovskite," J. Chem. Phys., 132 [21] 214709 (2010). crossref(new window)