JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation of LiO2 Adsorption on LaB1-xB`xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Investigation of LiO2 Adsorption on LaB1-xB`xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study
Kwon, Hyunguk; Han, Jeong Woo;
  PDF(new window)
 Abstract
Li-air batteries have received much attention due to their superior theoretical energy density. However, their sluggish kinetics on the cathode side is considered the main barrier to high performance. The rational design of electrode catalysts with high activity is therefore an important challenge. To solve this issue, we performed density functional theory (DFT) calculations to analyze the adsorption behavior of the molecule, which is considered to be a key intermediate in both the Li-oxygen reduction reaction (ORR) and the evolution reaction (OER). Specifically, to use the activity descriptor approach, the adsorption energy, which has previously been demonstrated to be a reliable descriptor of the cathode reaction in Li-air batteries, was calculated on (001) (B, B`
 Keywords
Li-air battery cathode; perovskite; adsorption;Density functional theory;
 Language
English
 Cited by
 References
1.
P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, "$Li-O_2$ and Li-S Batteries with High Energy Storage," Nat. Mater., 11 [1] 19-29 (2011). crossref(new window)

2.
R. Black, B. Adams, and L. F. Nazar, "Non-Aqueous and Hybrid $Li-O_2$ Batteries," Adv. Energy Mater., 2 [7] 801-15 (2012). crossref(new window)

3.
J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, and A. Kojic, "A Critical Review of Li/Air Batteries," J. Electrochem. Soc., 159 [2] R1-30 (2012). crossref(new window)

4.
A. C. Luntz and B. D. McCloskey, "Nonaqueous Li-Air Batteries: A Status Report," Chem. Rev., 114 [23] 11721-50 (2014). crossref(new window)

5.
Y. Lu, D. G. Kwabi, K. P. C. Yao, J. R. Harding, J. Zhou, L. Zuin, and Y. Shao-Horn, "The Discharge Rate Capability of Rechargeable $Li-O_2$ Batteries," Energy Environ. Sci., 4 [8] 2999-3007 (2011). crossref(new window)

6.
S. S. Zhang, D. Foster, and J. Read, "Discharge Characteristic of A Non-Aqueous Electrolyte $Li/O_2$ Battery," J. Power Sources, 195 [4] 1235-40 (2010). crossref(new window)

7.
A. Dobart, A. J. Paterson, J. Bao, and P. G. Bruce, "${\alpha}-MnO_2$ Nanowires: A Catalyst for the $O_2$ Electrode in Rechargeable Lithium Batteries," Angew. Chemie Int. Ed., 47 [24] 4521-24 (2008). crossref(new window)

8.
A. Debart, J. Bao, G. Armstrong, and P. G. Bruce, "An $O_2$ Cathode for Rechargeable Lithium Batteries: The Effect of A Catalyst," J. Power Sources, 174 [2] 1177-11 (2007). crossref(new window)

9.
Z. Peng, S. A. Freunberger, Y. Chen, and P. G. Bruce, "Reversible and Higher-Rate $Li-O_2$ Battery," Science, 337 [6094] 563-66 (2012). crossref(new window)

10.
G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, "Lithium-Air Battery: Promise and Challenges," J. Phys. Chem. Lett., 1 [14] 2193-203 (2010). crossref(new window)

11.
Y. Shao, S. Park, J. Xiao, J.-G. Zhang, Y. Wang, and J. Liu, "Electrocatalysts for Nonaqueous Lithium-Air Batteries: Status, Challenges, and Perspective," ACS Catal., 2 [5] 844-57 (2012). crossref(new window)

12.
D. B. Meadowcroft, "Low-Cost Oxygen Electrode Material," Nature, 226 [5248] 847-48 (1970). crossref(new window)

13.
J. O. Bockris and T. Otagawa, "The Electrocatalysis of Oxygen Evolution on Perovskites," J. Electrochem. Soc., 131 [2] 290-302 (1984). crossref(new window)

14.
J. Suntivich, H. A. Gasteiger, N, Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, "Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-Air Batteries," Nat. Chem., 3 [7] 546-50 (2011). crossref(new window)

15.
J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, "A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles," Science, 334 [6061] 1383-85 (2011). crossref(new window)

16.
J.-J. Xu, D. Xu, Z.-L. Wang, H.-G. Wang, L.-L. Zhang, and X.-B. Zhang, "Synthesis of Perovskite-Based Porous $La_{0.75}Sr_{0.25}MnO_3$ Nanotubes as A Highly Efficient Electrocatalyst for Rechargeable Lithium-Oxygen Batteries," Angew. Chemie Int. Ed., 52 [14] 3887-90 (2013). crossref(new window)

17.
Z. Fu, X. Lin, T. Huang, and A. Yu, "Nano-Sized $La_{0.8}Sr_{0.2}MnO_3$ as Oxygen Reduction Catalyst in Nonaqueous $Li/O_2$ Batteries," J. Solid State Electrochem., 16 [4] 1447-52 (2012). crossref(new window)

18.
J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, and X.-B. Zhang, "3D Ordered Macroporous $LaFeO_3$ as Efficient Electrocatalyst for $Li-O_2$ Batteries with Enhanced Rate Capability and Cyclic Performance," Energy Environ. Sci., 7 [7] 2213-19 (2014). crossref(new window)

19.
Y. Zhao, L. Xu, L. Mai, C. Han, Q. An, X. Xu, X. Liu, and Q. Zhang, "Hierarchical Mesoporous Perovskite $La_{0.5}Sr_{0.5}CoO_{2.91}$ Nanowires with Ultrahigh Capacity for Li-Air Batteries," Proc. Natl. Acad. Sci., 109 [48] 19569-74 (2012). crossref(new window)

20.
J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, and T. Bligaard, "Origin of the Overpotential for Oxygen Reduction at A Fuel-Cell Cathode," J. Phys. Chem. B, 108 [46] 17886-92 (2004). crossref(new window)

21.
I. C. Man, H. -Y. Su,. F. Calle-Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, and J. K. Norskov, "Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces," ChemCatChem, 3 [7] 1159-65 (2011). crossref(new window)

22.
R. Choi, J. Jung, G. Kim, K. Song, Y.-I. Kim, S. C. Jung, Y.-K. Han, H. Song, and Y.-M. Kang, "Ultra-Low Overpotential and High Rate Capability in $Li-O_2$ Batteries Through Surface Atom Arrangement of PdCu Nanocatalysts," Energy Environ. Sci., 7 [4] 1362-68 (2014). crossref(new window)

23.
B. G. Kim, H.-J. Kim, S. Back, K. W. Nam, Y. Jung, Y.-K. Han, and J. W. Choi, "Improved Reversibility in Lithium-oxygen Battery: Understanding Elementary Reactions and Surface Charge Engineering of Metal Alloy Catalyst," Sci. Rep., 4 4225 (2014).

24.
N. B. Halck, V. Petrykin, P. Krtil, and J. Rossmeisl, "Beyond the Volcano Limitations in Electrocatalysis - Oxygen Evolution Reaction," Phys. Chem. Chem. Phys., 16 [27] 13682-88 (2014). crossref(new window)

25.
P. Liao, J. A. Keith, and E. A. Carter, "Water Oxidation on Pure and Doped Hematite (0001) Surfaces: Prediction of Co and Ni as Effective Dopants for Electrocatalysis," J. Am. Chem. Soc., 134 [32] 13296-309 (2012). crossref(new window)

26.
Z. Xu and J. R. Kitchin, "Relationships between the Surface Electronic and Chemical Properties of Doped 4d and 5d Late Transition Metal Dioxides," J. Chem. Phys., 142 [10] 104703-11 (2015). crossref(new window)

27.
G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996) crossref(new window)

28.
G. Kresse and J. Furthmuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). crossref(new window)

29.
J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996). crossref(new window)

30.
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505-9 (1998). crossref(new window)

31.
L. Wang, T. Maxisch, and G. Ceder, "Oxidation Energies of Transition Metal Oxides within the GGA+U Framework," Phys. Rev. B, 73 [19] 195107 (2006). crossref(new window)

32.
H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- Zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976). crossref(new window)

33.
G. Makov and M. Payne, "Periodic Boundary Conditions in ab initio Calculations," Phys. Rev. B, 51 [7] 4014-22 (1995). crossref(new window)

34.
D. S. Sholl and J. A. Steckel, Density Functional Theory: A Practical Introduction; pp. 94-97, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.

35.
L. Andrews, "Infrared Spectrum, Structure, Vibrational Potential Function, and Bonding in the Lithium Superoxide Molecule $LiO_2$," J. Chem. Phys., 50 [10] 4288-99 (1969). crossref(new window)

36.
R. F. W. Bader, "Atoms in Molecules," Acc. Chem. Res., 18 [1] 9-15 (1985). crossref(new window)

37.
W. Tang, E. Sanville, and G. Henkelman, "A Grid-Based Bader Analysis Algorithm without Lattice Bias," J. Phys. Condens. Matter, 21 [8] 084204 (2009). crossref(new window)

38.
G. K. P. Dathar, W. A. Shelton, and Y. Xu, "Trends in the Catalytic Activity of Transition Metals for the Oxygen Reduction Reaction by Lithium," J. Phys. Chem. Lett., 3 [7] 891-95 (2012). crossref(new window)

39.
J. W. Han and B. Yildiz, "Enhanced One Dimensional Mobility of Oxygen on Strained $LaCoO_3(001)$ Surface," J. Mater. Chem, 21 [47] 18983-90 (2011). crossref(new window)

40.
W. Yang, Z. Wang, Z. Yang, C. Xia, R. Peng, X. Wu, and Y. Lu, "Enhanced Catalytic Activity toward $O_2$ Reduction on Pt-Modified $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{{\delta}}$ Cathode: A Combination Study of First-Principles Calculation and Experiment," ACS Appl. Mater. Interfaces, 6 [23] 21051-59 (2014) crossref(new window)

41.
Y. A. Mastrikov, R. Merkle, E. Heifets, E. A. Kotomin, and J. Maier, "Pathways for Oxygen Incorporation in Mixed Conducting Perovskites: A DFT-Based Mechanistic Analysis for (La, Sr)$MnO_{3-{\delta}}$," J. Phys. Chem. C, 114 [7] 3017-27 (2010). crossref(new window)

42.
Y. -L. Lee, J. Kleis, J. Rossmeisl and D. Morgan, "Ab initio Energetics of $LaBO_3(001)$ (B = Mn, Fe, Co and Ni) for Solid Oxide Fuel Cell Cathodes," Phys. Rev. B, 80 [22] 224101-20 (2009). crossref(new window)

43.
Y. Xu and W. A. Shelton, "$O_2$ Reduction by Lithium on Au(111) and Pt(111)," J. Chem. Phys., 133 [2] 024703-9 (2010). crossref(new window)