JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy
Park, N.; Huh, H.;
  PDF(new window)
 Abstract
This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.
 Keywords
Anisotropy;Fracture Envelope;Fracture Locus;Fracture Strain;
 Language
Korean
 Cited by
 References
1.
S. P. Keeler, W. A. Backofen, 1963, Plastic Instability and Fracture in Sheets Stretched over Rigid Punches, ASM Trans. Q., Vol. 56, No. 1, pp.25~48.

2.
Y. Li, M. Luo, J. Gerlach, T. Wierzbicki, 2010, Prediction of Shear-induced Fracture in Sheet Metal Forming, J. Mater. Process. Technol., Vol. 210, No. 14, pp. 1858~1869. crossref(new window)

3.
T. Børvik, O. S. Hopperstad, K. O. Pedersen, 2010, Quasi-brittle Fracture during Structural Impact of AA7075-T651 Aluminium Plates, Int. J. Impact Eng., Vol. 37, No. 5, 537~551. crossref(new window)

4.
A. S. Khan, H. Liu, 2012, A New Approach for Ductile Fracture Prediction on Al2024-T351 Alloy, Int. J. Plast., Vol. 35, pp. 1~12. crossref(new window)

5.
A. S. Khan, H. Liu, 2012, Strain Rate and Temperature Dependent Fracture Criteria for Isotropic and Anisotropic Metals, Int. J. Plast., Vol. 37, pp. 1~15. crossref(new window)

6.
M. G. Cockcroft, D. J. Latham, 1963, Ductility and the Workability of Metals, J. Inst. Met., Vol. 96, pp. 33~39.

7.
Y. Bai, T. Wierzbicki, 2010, Application of Extended Mohr–Coulomb Criterion to Ductile Fracture, Int. J. Fract., Vol. 161, No. 1, pp. 1~20. crossref(new window)

8.
Y. Lou, H. Huh, S. Lim, K. Pack, 2012, New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals, Int. J. Solids Struct., Vol. 49, No. 25, pp. 3605~3615. crossref(new window)

9.
Y. Lou, J. H. Yoon, H. Huh, 2014, Modeling of Shear Ductile Fracture Considering a Changeable Cut-off Value for Stress Triaxiality, Int. J. Plast., Vol. 54, pp. 56~80. crossref(new window)

10.
N. Park, H. Huh, J. B. Nam, C. G. Jung, 2015, Anisotropy Effect on the Fracture Model of DP980 Sheets Considering the Loading Path, Int. J. Automot. Technol., Vol. 16, No. 1, pp. 73~81. crossref(new window)

11.
Y. Lou, S. J. Lim, H. Huh, 2013, Prediction of Fracture Forming Limit for DP780 Steel Sheet, Met. Mater. Int., Vol. 19, No. 4, pp. 697~705. crossref(new window)