JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Spring-back Prediction of DP980 Steel Sheet Using a Yield Function with a Hardening Model
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Transactions of Materials Processing
  • Volume 25, Issue 3,  2016, pp.189-194
  • Publisher : The Korean Society for Technology of Plasticity
  • DOI : 10.5228/KSTP.2016.25.3.189
 Title & Authors
Spring-back Prediction of DP980 Steel Sheet Using a Yield Function with a Hardening Model
Kim, J.H.; Kang, G.S.; Lee, H.S.; Kim, J.H.; Kim, B.M.;
  PDF(new window)
 Abstract
In the current study, spring-back of DP980 steel sheet was numerically evaluated for U-bending using a yield function with a hardening model. For spring-back prediction, two types of yield functions - Hill`48 and Yld2000-2d - were considered. Additionally, isotropic hardening and the Yoshida-Uemori model were used to investigate the spring-back behavior. The parameters for each model were obtained from uniaxial tension, uniaxial tension-compression, uniaxial tension-unloading and hydraulic bulging tests. The numerical simulations were performed using the commercial software, PAM-STAMP 2G. The results were compared with experimental data from a U-bending process.
 Keywords
Spring-back;Hardening Model;Yield Function;U-bending;Advanced High Strength Steel;
 Language
Korean
 Cited by
 References
1.
S. C. Park, T. Park, Y. Koh, D. Y. Seok, T. Kuwabara, N. Noma, K. Chung, 2013, Spring-back Prediction of MS1470 Steel Sheets Based on a Non-linear Kinematic Hardening Model, Trans. Mater. Process, Vol. 22, No. 6, pp. 303~309. crossref(new window)

2.
D. W. Kim, S. S. Bang, M. S. Kim, H. Y. Lee, N. S. Kim, 2013, Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Bauschinger Effect, Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 10, pp. 1239~1249. crossref(new window)

3.
J. Ha, M. G. Lee, F. Barlat, 2012, Evaluation of Anisotropic Hardening Models using Two-Step Tension Tests, Trans. Mater. Process, Vol. 21, No. 6, pp. 372~377. crossref(new window)

4.
R. Hill, 1948, A Theory of the Yielding and Plastic Flow of Anisotropic Metals, Proc. R. Soc. Lond. A, Vol. 193, No. 1033, pp. 281~297. crossref(new window)

5.
F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, D. J. Lege, F. Pourboghrat, S. H. Choi, E. Chu, 2003, Plane Stress Yield Function for Aluminum Alloy Sheets - Part 1: Theory, Int. J. Plast., Vol. 19, No. 9, pp. 1297~1319. crossref(new window)

6.
F. Yoshida, T. Uemori, 2002, A Model of Large-strain Cyclic Plasticity Describing the Bauschinger Effect and Workhardening Stagnation, Int. J. Plast., Vol. 18, No. 5-6, pp. 661~686. crossref(new window)

7.
C. Gomes, O. Onipede, M. Lovell, 2005, Investigation of Springback in High Strength Anisotropic Steels, J. Mater. Process. Technol., Vol. 159, No. 1, pp. 91~98. crossref(new window)

8.
T. Belytschko, J. I. Lin, C. Tsay, 1984, Explicit Algorithms for the Nonlinear Dynamics of Shells, Comput. Meth. Appl. Mech. Eng., Vol. 42, No. 2, pp. 225~251. crossref(new window)

9.
A. Aryanpour, D. E. Green, 2012, Evaluation of LS-Dyna user’s Conference, 12th Int. LS-Dyna Conf., Dynamore Gmbh, Detroit, USA.