Advanced SearchSearch Tips
Status of Marine Environment of Olive Flounder, Paralichythys olivaceus, Culture Ground in Jeju-do - Focus on Kudoa septempunctata positive and negative farm -
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Status of Marine Environment of Olive Flounder, Paralichythys olivaceus, Culture Ground in Jeju-do - Focus on Kudoa septempunctata positive and negative farm -
OH, Hyun-Taik; YI, Yong-Min; CHO, Yun-Sik; KIM, Jin-Ho; LEE, Kyu-Hyun;
  PDF(new window)
In this study, we monitored the status of marine environment of olive flounder, Paralichythys olivaceus, culture ground in Jeju-do, Republic of Korea. It reported the consumption of raw olive flounder meat containing of Kudoa, Kudoa septempunctata, could induce vomitting and diarrhea in Japan. The Kudoa is a new mycosporean species, researchers found Kudoa from the muscles of olive flounder cultured at western Japan and imported from Jeju-do. We choose two Kudoa positive farms and two negative farms in the mid of concern about the relation between Kudoa and habitat. We found two marine invasive species at the water-pumping seabed at one of the Kudoa positive farm. The concentration of pH and DO at on-growing flounder farms showed the decreasing pattern along side the raceway (influent sea waters > on growing sea waters > outfluent sea waters). The TN and TP values increased gradually following to the raceway (influent sea waters < on growing sea waters < outfluent sea waters). The concentration of COD and SS were in the range of , , respectively. The calculated residence time was 4hr 32minutes at F1, 11hr 21minutes at F2, and 9hr 50minutes at F3, respectively. It was calculated same distance of 4 km away from effluent pipes. Although direct relation between Kudoa and marine environment could not define well based on this study result, the more studies on marine environmental stressors for olive flounder are required to conduct as a reliable method including socio-economic group and environmental group.
Olive flounder;Paralichthys olivaceus;Kudoa septempuntata;Jeju-do;
 Cited by
광어 종자생산업체의 수익성 분석,홍혜수;박경일;서영상;김도훈;

수산해양교육연구, 2016. vol.28. 6, pp.1792-1800 crossref(new window)
Profitability Analysis of Flatfish Fry Production Farms, Journal of Fisheries and Marine Sciences Education, 2016, 28, 6, 1792  crossref(new windwow)
Austin, B. & Austin, D. A.(2007). Bacterial fish pathogens: disease of farmed and wild fish. Springer Science & Business Media.

Bartholomew, J. L..Whipple, M. J..Stevens, D. G..Fryer, J. L.(1997). The life cycle of Ceratomyxa shasta, a myxosporean parasite of salmonids, requires a freshwater polychaetes as an alternate host. Journal of Parasitology, 83, 859-868. crossref(new window)

Barton, B. A. & Iwama, G. K.(1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases, 1, 3-26. crossref(new window)

Bax, N..Williamson, A..Aguero, M..Gonzalez, E. & Geeves, W.(2003). Marine invasive alien species: a threat to global biodiversity. Marine policy, 27(4), 313-323. crossref(new window)

Benajiba, M. M..Marques, A.(1993) The alternation of actino-myxidian and myxosporidian sporal forms in the development of Myxidium giordi (parasite of Anguilla anguilla) through oligochaetes. European Association of Fish Pathologists, 13, 100-103.

Cha, S. H..Lee, J. S..Song, C. B..Lee, K. J. & Jeon, Y. J.(2008). Effects of chitosan-coated diet on improving water quality and innate immunity in the olive flounder, Paralichthys olivaceus. Aquaculture, 278(1), 110-118. crossref(new window)

Cho, S. H..Lee, S. M..Park, B. H..Ji, S. C..Lee, J..Bae, J. & Oh, S. Y.(2006a). Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season. Journal of the World Aquaculture Society, 37(2), 168-174. crossref(new window)

Cho, S. H..Lee, S. M..Park, B. H. & Lee, S. M.(2006b). Effect of feeding ratio on growth and body composition of juvenile olive flounder Paralichthys olivaceus fed extruded pellets during the summer season. Aquaculture, 251(1), 78-84. crossref(new window)

Eh, Y. Y.(2011). An Environmental effect on productivity of flounder culture farms. The Journal of Fisheries Business Administration, 42(3), 79-93.

Francis-Floyd, R.(2009). Stress-Its role in fish disease.

Han, H. J..Kim, D. H..Lee, D. C..Kim, S. M. & Park, S. I.(2006). Pathogenicity of Edwardsiella tarda to olive flounder, Paralichthys olivaceus (Temminck & Schlegel). Journal of Fish Diseases, 29(10), 601-609. crossref(new window)

Iijima, Y..Nakanishi, N..Furusawa, H..Ohnishi, T. & Sugita-Konishi, Y.(2012). Inter-laboratory validation and applications of quantitative real-time PCR for the detection of Kudoa septempunctata in olive flounder (Paralichthys olivaceus). Japanese journal of infectious diseases, 65(5), 436-438. crossref(new window)

Jee, B. Y..Kim, Y. C. & Park, M. S.(2001). Morphology and biology of parasite responsible for scuticociliatosis of cultured olive flounder Paralichthys olivaceus. Diseases of aquatic organisms, 47(1), 49-55. crossref(new window)

Jeju-do(2011). The guideline of effluent water quality of land-based fisheries farms.

Jeju-do(2012). The guideline of effluent water quality of land-based fisheries farms.

Jeju-do(2013). The guideline of effluent water quality of land-based fisheries farms.

Kang, J. C..Koo, J. K. & Lee. J. S.(2000). Environmental survey for productivity enhancement of cultured fleshy prawn Penaeus chinensis. Journal of Aquaculture., 13(1), 39-46.

Kim, J. O. & Kang, S. K.(2011). Economic impact effect analysis of flounder aquaculture industry in Jeju. The Journal of Fisheries Business Administration, 42(1), 85-96.

Kim, S. S..Kim, K. W..Kim, K. D..Lee, B. J..Lee, J. H..Han, H. S..Lee, K. J.(2014). Comparison of extruded and moist pellets for growth performance , water quality and histology of olive flounder Paralichthys olivaceus in Jeju fish farm. Journal of Fisheries and Marine Science Education, 26(3), 667-675. crossref(new window)

Lawson, T. B.(Ed.).(1995). Fundamentals of aquacultural engineering. Springer Science & Business Media.

Malczewski, J.(2000). On the use of weighted linear combination method in GIS: common and best practice approaches. Transactions in GIS, 4(1), 5-22. crossref(new window)

Matsukane, Y..Sato, H..Tanaka, S..Kamata, Y. & Sugita-Konishi, Y.(2010). Kudoa septempunctata n. sp.(Myxosporea: Multivalvulida) from an aquacultured olive flounder (Paralichthys olivaceus) imported from Korea. Parasitology research, 107(4), 865-872. crossref(new window)

Matsukane, Y..Sato, H..Tanaka, S..Kamata, Y. & Sugita-Konishi, Y.(2011). Kudoa iwatai and two novel Kudoa spp., K. trachuri n. sp. and K. thunni n. sp.(Myxosporea: Multivalvulida), from daily consumed marine fish in western Japan. Parasitology research, 108(4), 913-926. crossref(new window)

Molnar, J. L..Gamboa, R. L..Revenga, C. & Spalding, M. D.(2008). Assessing the global threat of invasive species to marine biodiversity. Frontiers in Ecology and the Environment, 6(9), 485-492. crossref(new window)

Nath, S. S..Bolte, J. P..Ross, L. G. & Aguilar-Manjarrez, J.(2000). Applications of geographical information systems (GIS) for spatial decision support in aquaculture. Aquacultural Engineering, 23(1), 233-278. crossref(new window)

NFRDI(2006). Standard manual of Olive flounder culture. National fisheries research and development institute, Busan, 191.

NFRDI(2012). The monitoring of marine environment of fisheries ground.

NOAA, main_species/flounder.htm.

Ogawa, K.(1996). Marine parasitology with special reference to Japanese fisheries and mariculture. Veterinary Parasitology, 64(1), 95-105. crossref(new window)

Ohnishi, T..Kikuchi, Y..Furusawa, H..Kamata, Y. & Sugita-Konishi, Y.(2013). Kudoa septempunctata invasion increases the permeability of human intestinal epithelial monolayer. Foodborne pathogens and disease, 10(2), 137-142. crossref(new window)

Perez, O. M..Telfer, T. C. & Ross, L. G.(2003). Use of GIS-based models for integrating and developing marine fish cages within the tourism industry in Tenerife (Canary Islands). Coastal Management, 31(4), 355-366. crossref(new window)

Phillips, M. J..Enyuan, F..Gavine, F..Hooi, T. K..Kutty, M. N..Lopez, N. A. & Yokoyama, H.(2009). Review of environmental impact assessment and monitoring in aquaculture in Asia-Pacific. FAO fisheries and aquaculture technical paper, (527).

Rottmann, R. W..Francis-Floyd, R. & Durborow, R.(1992). The role of stress in fish disease. Southern Regional Aquaculture Center.

Salari, R..Saad, C. R..Kamarudin, M. S. & Zokaeifar, H.(2012). Effects of different stodking densities on tiger grouper juvenile (Epinephelus fuscoguttatus) growth and a comparative study of the flow-through and recirculating aquaculture system. African. Journal of Agricultural Research, 7(26), 3765-3771.

Song, J. Y..Choi, J. H..Choi, H. S..Jung, S. H. & Park, M. A.(2013). Monitoring of Kudoa septempunctata in cultured olive flounder and wild fish in Jeju Island during 2012. Journal of Fish Pathology, 26(3), 129-137. crossref(new window)

Uspenskaya, A. V.(1995). Alternation of actinosporidian and myxosporean phases in the life cycle of Zschokkella nova (Myxozoa). Journal of Eukaryotic Microbiology, 42, 665-668. crossref(new window)

Yokoyama, H..Grabner, D. & Shirakashi, S.(2012). Transmission biology of the Myxozoa. INTECH Open Access Publisher.