JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristics of Hydrogen Iodide Decomposition using Alumina-Supported Ni Based Catalyst
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of Hydrogen Iodide Decomposition using Alumina-Supported Ni Based Catalyst
KIM, JI HYE; PARK, CHU SIK; KIM, CHANG HEE; KANG, KYOUNG SOO; JEONG, SEONG UK; CHO, WON CHUL; KIM, YOUNG HO; BAE, KI KWANG;
  PDF(new window)
 Abstract
HI decomposition reaction requires a catalyst for the efficient production of hydrogen as a key reaction for hydrogen production in sulfur-iodine thermochemical water-splitting (SI) cycle. As a catalyst used in the reaction, the performance of platinum catalyst is excellent. While, the platinum catalyst is not economical. Therefore, studies of a nickel catalyst that could replace platinum have been carried out. In this study, the characteristics of the catalytic HI decomposition on the amount of loaded nickel (Ni
 Keywords
S-I process;HI decomposition;Nickel catalyst;Alumina;
 Language
Korean
 Cited by
1.
Bifunctional Characteristics of Al2O3supported Ni in the HI Decomposition of Sulfur-Iodine Process, MATEC Web of Conferences, 2016, 67, 06063  crossref(new windwow)
 References
1.
X Lin, Y Zhang "Hydrogen production by HI decomposition over nickel-ceria-zirconia catalysts via the sulfur-iodine thermochemical water-splitting cycle". Energy Conversion and Management. vol. 84, 2014. pp.664-670. crossref(new window)

2.
J. E. Funk, "Thermochemical production of hydrogem via multistage water splitting process", International Journal of Hydrogen Energy, Vol. 1, 1976. pp. 33-43.

3.
K. Onuki, Y. Inagaki, R. Hido, and Y. Tachibana, "Research and development on nuclear hydrogen production using HTGR at JAERI", Progress in Nuclear Energy, 47, 2005, p. 496. crossref(new window)

4.
D. O'keefe, C. Allen, G, Besenbruch, L. Browon, J. Norman, and R. Sharp, "Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle", Int hydrogen Energy, 7, 1982, p. 381. crossref(new window)

5.
K. D. Jung "Thermochemical Cycle for Hydrogen Production", Prospectives of Industrial Chemistry, Vol. 9, No. 4, 2006, pp. 15-22.

6.
I. Iida, Z. phys. Chem. N. F., 1978, 109, 221.

7.
Y. shindo. "Kinetics of the catalytic decomposition of hydrogen iodide in the thermochemical hydrogen production", Hydrogen energy, Vol 9, No 8, 1984, pp. 695-700. crossref(new window)

8.
Z. C. Wang, L. J. Wang, P. Zhang, S. Z. Chen, J. M. Xu, J. Chen, "Effect of preparation methods on Pt/alumina catalysts for the hydrogen iodide catalytic decomposition", Chinese Chmical Letters, Vol 20, 2009 pp. 102-105. crossref(new window)

9.
L Wang, Q Han, D Li, Z Wang, J Chen. Comparisons of Pt catalysts supported on active carbon, carbon molecular sieve, carbon nanotubes and graphite for HI decomposition at different temperature. Vol 38, 2013 p. 109. crossref(new window)

10.
Y. K. Ko, C. S. Park, K.S. Kang, K. K. Bea, and Y. h. Kim, "Effect of Support in HI Decomposition Reaction using Pt Catalyst", Trans. of the Korea Hydrogen and New Energy Society, Vol 22, No. 4, 2011, pp. 415-423.

11.
P. Favuzza, C. Felici, M. Lanchi, R. Liberatore, C.V. Mazzocchia, A. Spadoni, P. Tarquini, A.C. Tito, Int. J. Hydrogen Energy, 34, 4049, 2009. crossref(new window)

12.
Y Zhang, J Zhou, Y Chen, Z Wang. hydrogen iodide decomposition over nickel-ceria catalysts for hydrogen production in the sulfur-iodine cycle. Vol 33, 2008. pp. 5477-5483. crossref(new window)

13.
S. Y. Kim, Y. K. Ko, C. S. Park, K.S. Kang, K. K. Bea, and Y. h. Kim, "Characteristics of Hydrogen Iodide Decomposition using Ni-Pt Bimetallic Catalyst in Sulfur-Iodine Process", Trans. of the Korea Hydrogen and New Energy Society, Vol 23, No. 1, 2012, pp. 1-7. crossref(new window)

14.
D Li, L Wang, P Zhang, S Chen, J Xu. HI decomposition over active carbon supported binary Ni-Pd catalysts prepared by electroless plating. Vol 38, 2013 pp. 32-35.

15.
D Li, L Wang, P Zhang, S Chen, J Xu. HI decomposition over PtNi/C bimetallic catalysts prepared by electroless plating. Vol 38, 2013, pp. 10839-10844. crossref(new window)

16.
P. Betancourt. Rivesb, R. Hubautb, C.E. Scotta, J. Goldwasser "A study of the ruthenium${\pm}$alumina system". Applied Catalysis A: General 170, 1998, pp. 307-314.

17.
E. J. Park, Y. K. Ko, C. S. Park, K.S. Kang, K. K. Bea, and Y. h. Kim, "The Characteristics of HI Decomposition using Pt/Al2O3 Catalyst Heat Treated in Air and Hydrogen Atmosphere". Trans. of the Korea Hydrogen and New Energy Society. vol.25, 2014. pp. 219-226. crossref(new window)

18.
C. H. bartholomew, R. B. pannell. The stoichiometry of hydrogen and carbon monoxide chemisorption on alumina- and silica-supported nickel. 65, 390-401, 1980. crossref(new window)