JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Characteristics of a Hydrogen Isotope Storage and Accountancy System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Characteristics of a Hydrogen Isotope Storage and Accountancy System
KIM, YEANJIN; JUNG, KWANGJIN; GOO, DAESEO; PARK, JONGCHUL; JEON, MIN-GU; YUN, SEI-HUN; CHUNG, HONGSUK;
  PDF(new window)
 Abstract
Global energy shortage problem is expected to increase driven by strong energy demand growth from developing countries. Nuclear fusion power offers the prospect of an almost infinite source of energy for future generations. Hydrogen isotope storage and delivery system is a important subsystem of a nuclear fusion fuel cycle. Metal hydride is a method of the high-density storage of hydrogen isotope. For the safety storage of hydrogen isotope, depleted uranium (DU) has been widely proposed. But DU needs a safe test because It is a radioactive substance. The authors studied a small-scale DU bed and a medium-scale DU bed for the safety test. And then we made a large-scale DU bed and stored hydrogen isotopes in the bed. Before the hydriding/dehydriding, we tested it`s heating and cooling properties and carried out an activation procedure. As a result, Reaction rate of DU- is more rapid than the other metal hydride ZrCo. Through the successful storage result of our large bed, the development possibility of the hydrogen isotope storage technology seems promising.
 Keywords
Metal hydride;Hydriding;Dehydriding;DU;Hydrogen isotope;Nuclear fusion;
 Language
Korean
 Cited by
1.
Dehydriding Performance in a Depleted Uranium Bed, Transactions of the Korean hydrogen and new energy society, 2016, 27, 1, 22  crossref(new windwow)
 References
1.
M. Sim, H. Chung, S. Peak, M. Lee, K. Kim, S. Paal, et al., Chracteristics of ZrCo Alloy for the storage of Hydrogen Isotope, Journal of the Korea Physical Society, Vol. 49, 2006, pp. S369-S373.

2.
H. Chung, D. Chung, J. Lee, D. Koo, J. Lee, C. Lee, et al., Fusion tritium research facilities in KAERI, Fusion Engineering and Design, Vol. 87, 2012, pp. 448-453. crossref(new window)

3.
D. Chung, D. Jeong, D. Koo, H. Yoshida, K. Song, M. Chang, et al., Fusion fuel gas recovery and delivery characteristics on a tray-type ZrCo bed, Fusion Engineering and Design, Vol. 86, 2011, pp. 2233-2236. crossref(new window)

4.
H. Chung, M. Shim, H. Yoshida, H. Jin, J. Lee, D. Ahn, et al., Korea's progress on the ITER tritium systems, Fusion Engineering and Design, Vol. 84, 2009, pp. 599-603. crossref(new window)

5.
M. Shim, H. Chung, S. Cho, and H. Yoshida, Disproportionation characteristics of a zirconiumcobalt hydride bed under ITER operating conditions, Fusion Science and Technology, Vol. 53, 2008, pp. 830-840.

6.
M. Shim, H. Chung, H. Yoshida, K. Kim, S. Cho, et al., Experimental Study on the Delivery Rate and Recovery Rate, Fusion Science and Technology, Fusion Science and Technology, Vol. 54, 2008, p. 27.

7.
M. Shim, H. Chung, H. Yoshida, H. Jin, J. Lee, K. Song, et al., Hydriding/dehydriding characteristics on fast heat transfer response ZrCo bed for ITER, Fusion Engineering and Design, Vol. 84, 2009, pp. 1763-1766. crossref(new window)

8.
M. Shim, H. Chung, H. Yoshida, H. Jin, M. Chang, S. Yun, et al., Initial test results of a fast heat transfer response ZrCo hydride bed, Fusion Science and Technology, Vol. 56, 2009, pp. 856-860.

9.
S. Yun, M. Lee, K. Park, Y. Oh, S. Cho, M. Chang, et al., Compressibility study during hydride reaction of ZrCo, Fusion Engineering and Design, Vol. 86, 2011, pp. 2282-2285. crossref(new window)

10.
H. Kang, S. Cho, M. Lee, S. Yun, M. Chang, H. Chung, et al., Fabrication and test of thin doublelayered annulus metal hydride bed, Fusion Engineering and Design, Vol. 86, 2011, pp. 2196-2199. crossref(new window)

11.
S. Cho, M. H. Chang, S. H. Yun, H. G. Kang, H. Chung, K. M. Song, et al., ITER storage and delivery system R&D in Korea, IEEE Transactions on Plasma Science, Vol. 38, No. 3, 2010, pp. 425-433. crossref(new window)

12.
D. Chung, J. Lee, D. Koo, H. Chung, K. Kim, H. Kang, M. Chang, et al., Hydriding and dehydriding characteristics of small-scale DU and ZrCo beds, Fusion Engineering and Design, Vol. 88, 2013, pp. 2276-2279. crossref(new window)

13.
H. Chung, D. Chung, D. Goo, J. Lee, M. Shim, et al., Storage and Delivery of Hydrogen Isotopes, Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 3, 2011, pp. 372-379.

14.
D. Goo, H. Chung, D. Chung, J. Lee, S. Yun, et al., Hydrogen Isotopes Accountancy and Storage Technology, Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 1, 2012, pp. 49-55. crossref(new window)

15.
H. Chung, H. Kang, M. Chang, S. Cho, W. Kim, J. Nam, et al., Safety Analysis of a Hydrogen Isotopes Process, Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 3, 2012, pp. 219-226. crossref(new window)

16.
J. Lee, J. Park, D. Koo, D. Chung, H. Chung, et al., Rapid Cooling Performance Evaluation of a ZrCo bed for a Hydrogen Isotope Storage, Trans. of the Korean Hydrogen and New Energy Society, Vol. 24, No. 2, 2013, pp. 128-135. crossref(new window)

17.
J. Park, J. Lee, D. Goo, H. Chung, at al., Hydrogen Absorption/Desorption and Heat transfer Modeling in a Concentric Horizontal ZrCo Bed, Trans. of the Korean Hydrogen and New Energy Society, Vol. 24, No. 4, 2013, pp. 295-301. crossref(new window)

18.
S. Yun, M. Chang, H. Kang, C. Kim, S. Cho, at al., Tritium Fuel Cycle Technology of ITER Project, Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 1, 2012, pp. 56-64. crossref(new window)

19.
Outotec, HSC Chemistry 6.0 User's Guide (2006).